Skip to main content

Posterior Thoracic Implants

Handbook of Orthopaedic Trauma Implantology
  • 20 Accesses

Abstract

Posterior instrument systems are widely used in fixation of thoracic and thoracolumbar spinal fractures. Some of them have stood the test of time and still in vogue. Others are being modified and modernized to face newer challenges. Thoracic spine has anatomical properties like narrow spinal canal and a close proximity to surrounding vital structures. Implants are designed according to safety and necessity of the thoracic spine. Journey of modern spinal system was started with hook- and rod-based system of Harrington followed by Luque rod and sublaminar wire, Drummond wire, Hartshill rectangle with sublaminar wire. Then the hybrid system of Cotrel and Dubousset brought new dimension of posterior fixation especially in deformity correction. Raymond Roy-Camille of France introduced modern pedicle screws. Pedicle screw-based systems are of two types – plate-based system like Steffee and rod-based systems like Moss Miami, USS, Expedium, CD Horizon, etc. Recent developments include minimal invasive pedicle screw systems, fenestrated pedicle screws, expandable pedicle screws, and pedicle hook fixed to the bone with a central screw. Titanium mesh cage, expandable cages, and PEEK cages are used through posterior approach to support or replace anterior column of thoracic spine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Panjabi MM, Goel V, Oxland T, Takata K, Duranceau J, Krag M, Price M. Human lumbar vertebrae. Quantitative three-dimensional anatomy. Spine (Phila Pa 1976). 1992;17(3):299–306. https://doi.org/10.1097/00007632-199203000-00010.

    Article  CAS  Google Scholar 

  2. Cinotti G, Gumina S, Ripani M, Postacchini F. Pedicle instrumentation in the thoracic spine. A morphometric and cadaveric study for placement of screws. Spine (Phila Pa 1976). 1999;24(2):114–9. https://doi.org/10.1097/00007632-199901150-00003.

    Article  CAS  Google Scholar 

  3. Scoles PV, Linton AE, Latimer B, Levy ME, Digiovanni BF. Vertebral body and posterior element morphology: the normal spine in middle life. Spine (Phila Pa 1976). 1988;13(10):1082–6. https://doi.org/10.1097/00007632-198810000-00002.

    Article  CAS  Google Scholar 

  4. Chaynes P, Sol J, Vaysse P, et al. Vertebral pedicle anatomy in relation to pedicle screw fixation: a cadaver study. Surg Radiol Anat. 2001;23:85–90. https://doi.org/10.1007/s00276-001-0085-z.

    Article  PubMed  CAS  Google Scholar 

  5. Solitro GF, Whitlock K, Amirouche F, Mehta AI, McDonnell A. Currently adopted criteria for pedicle screw diameter selection. International Journal of Spine Surgery. 2019;13(2):132–45. https://doi.org/10.14444/6018.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verma V, Santoshi JA, Jain V, Patel M, Dwivedi M, Nagar M, Selvanayagam R, Pal D. Thoracic pedicle morphometry of dry vertebral columns in relation to trans-pedicular fixation: a cross-sectional study from Central India. Cureus. 2020;12(5):e8148. https://doi.org/10.7759/cureus.8148.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harrington PR. Treatment of scoliosis: correction and internal fixation by spine instrumentation. J Bone Joint Surg Am. 1962;44A(4):591–610.

    Article  Google Scholar 

  8. Gertzbein SD, Macmichael D, Tile M. Harrington instrumentation as a method of fixation in fractures of the spine. J Bone Joint Surg Br. 1982;64(5):526–9. https://doi.org/10.1302/0301-620X.64B5.7142259.

    Article  PubMed  CAS  Google Scholar 

  9. Winter RB, Lonstein JE. Adult idiopathic scoliosis treated with Luque or Harrington rods and sublaminar wiring. J Bone Joint Surg Am. 1989;71(9):1308–13.

    Article  CAS  Google Scholar 

  10. McAfee PC, Bohlman HH. Complications following Harrington instrumentation for fractures of the thoracolumbar spine. J Bone Joint Surg Am. 1985;67(5):672–86.

    Article  CAS  Google Scholar 

  11. Dickson JH, Harrington PR, Erwin WD. Results of reduction and stabilization of the severely fractured thoracic and lumbar spine. J Bone Joint Surg Am. 1978;60(6):799–805.

    Article  CAS  Google Scholar 

  12. Resina J, Alves AF. A technique of correction and internal fixation for scoliosis. J Bone Joint Surg Br. 1977;59(2):159–65. https://doi.org/10.1302/0301-620X.59B2.873976.

    Article  PubMed  CAS  Google Scholar 

  13. Drummond DS, Keene J, Breed A. Segmental spinal instrumentation without sublaminar wires. Arch Orthop Trauma Surg. 1985;103(6):378–84. https://doi.org/10.1007/BF00435445.

    Article  PubMed  CAS  Google Scholar 

  14. Tarpada SP, Morris MT, Burton DA. Spinal fusion surgery: a historical perspective. J Orthop. 2016;14(1):134–6. https://doi.org/10.1016/j.jor.2016.10.029.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luque ER. The anatomic basis and development of segmental spinal instrumentation. Spine (Phila Pa 1976). 1982;7(3):256–9. https://doi.org/10.1097/00007632-198205000-00010.

    Article  CAS  Google Scholar 

  16. Luque ER. Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res. 1982;163:192–8.

    Article  Google Scholar 

  17. Luque ER. Interpeduncular segmental fixation. Clin Orthop Relat Res. 1986;(203):54–7.

    Google Scholar 

  18. Dove J. Internal fixation of the lumbar spine the Hartshill rectangle. Clin Orthop Relat Res. 1986;(203):135–40.

    Google Scholar 

  19. Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop Relat Res. 1988;227:10–23.

    Article  CAS  Google Scholar 

  20. Lenke LG, Bridwell KH, Baldus C, Blanke K, Schoenecker PL. Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis. J Bone Joint Surg Am. 1992;74(7):1056–67.

    Article  CAS  Google Scholar 

  21. Skubic JW, Kostuik JP, Suh PB, Salo P. The use of Cotrel-Dubousset instrumentation in the treatment of adult idiopathic scoliosis. Iowa Orthop J. 1991;1991(11):137–48.

    Google Scholar 

  22. Kretzer RM, Sciubba DM, Bagley CA, Wolinsky JP, Gokaslan ZL, Garonzik IM. Translaminar screw fixation in the upper thoracic spine. J Neurosurg Spine. 2006;5(6):527–33. https://doi.org/10.3171/spi.2006.5.6.527.

    Article  PubMed  Google Scholar 

  23. Park SB, Jahng TA, Kim CH, Chung CK. Thoracic and lumbar laminoplasty using a translaminar screw: morphometric study and technique. J Neurosurg Spine. 2009;10(6):603–9. https://doi.org/10.3171/2009.2.SPINE08257.

    Article  PubMed  Google Scholar 

  24. Best NM, Sasso RC. Efficacy of translaminar facet screw fixation in circumferential interbody fusions as compared to pedicle screw fixation. J Spinal Disord Tech. 2006;19(2):98–103. https://doi.org/10.1097/01.bsd.0000179244.76244.5e.

    Article  PubMed  Google Scholar 

  25. Dennis F. Spinal instability as defined by the three-column concept in acute spinal trauma. Chin Orthop. 1984;189:65–76.

    Google Scholar 

  26. Kilincer C, Inceoglu S, Zileli M, Ferrara L. Biomechanical analysis of A Turkish-made posterior spinal instrumentation system Part II. Evaluation of the stability and strength provided by the transpedicular screw fixation device. Turk Neurosurg. 2005;15(2):64–70.

    Google Scholar 

  27. Defino H,Galbusera F, Wilke H. Pedicle screw fixation and design: lumbar spine online textbook. ISSLS, 2020. http://www.wheelessonline.com/ISSLS/section-11-chapter-9-pedicle-screw-fixation-and-design/

  28. Navale K, Neema PP, Gupta V, Rassiwala M. Evaluation of efficacy and accuracy of free hand pedicle screw insertion technique in thoracic spine. Indian J Orthop Surg. 2017;3(2):217–26.

    Google Scholar 

  29. Roy-Camille R, Saillant G, Berteaux D, Salgodo V. Osteosynthesis of thoracolumbar spine fractures with metal plates screwed through the vertebral pedicles. Reconstr Surg Traumatol. 1976;15:2–16.

    PubMed  CAS  Google Scholar 

  30. Thalgott JS, LaRocca H, Aebi M, Dwyer AP, Razza BE. Reconstruction of the lumbar spine using AO DCP plate internal fixation. Spine (Phila Pa 1976). 1989;14(1):91–5. https://doi.org/10.1097/00007632-198901000-00018.

    Article  CAS  Google Scholar 

  31. Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res. 1984;189:125–41.

    Article  Google Scholar 

  32. Dick W. The “fixateur interne” as a versatile implant for spine surgery. Spine (Phila Pa 1976). 1987;12(9):882–900.

    Article  CAS  Google Scholar 

  33. Steffee AD, Biscup RS, Sitkowski DJ. Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop Relat Res. 1986;203:45–53.

    Article  Google Scholar 

  34. De Maio F, Dolan LA, De Luna V, Weinstein SL. Posterior spinal fusion with Moss-Miami instrumentation for adolescent idiopathic scoliosis: radiographic, clinical and patient-centered outcomes. Iowa Orthop J. 2007;27:28–39.

    PubMed  PubMed Central  Google Scholar 

  35. Kok D, Firkins PJ, Wapstra FH, et al. A new lumbar posterior fixation system, the memory metal spinal system: an in-vitro mechanical evaluation. BMC Musculoskelet Disord. 2013;14:269. https://doi.org/10.1186/1471-2474-14-269.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsai W, Chen P, Lu T, et al. Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone. BMC Musculoskelet Disord. 2009;10:44. https://doi.org/10.1186/1471-2474-10-44.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sangwan S, Singh R, Siwach R, Magu N, Kadian V, Boswana V. Role of Moss Miami spinal system in traumatic unstable thoracolumbar spine: a study of 50 cases. Annals of Neurosurgery. 2008;8:1–6.

    Google Scholar 

  38. Kubosch D, Kubosch EJ, Gueorguiev B, Zderic I, Windolf M, Izadpanah K, Südkamp NP, Strohm PC. Biomechanical investigation of a minimally invasive posterior spine stabilization system in comparison to the Universal Spine System (USS). BMC Musculoskelet Disord. 2016;17:134.

    Article  CAS  Google Scholar 

  39. Barakat AS, Elattar A, Fawaz K, Sultan AM, Koptan W, ElMiligui Y, Alobaid A. A comparative study between the Universal Spinal System® (USS) and the CD Horizon® Legacy™ (CDH) in the management of thoracolumbar fractures. SICOT J. 2019;5:42. https://doi.org/10.1051/sicotj/2019039. Epub 2019 Nov 29

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harris EB, Massey P, Lawrence J, Rihn J, Vaccaro A, Anderson DG. Percutaneous techniques for minimally invasive posterior lumbar fusion. Neurosurg Focus. 2008;25(2):E12. https://doi.org/10.3171/FOC/2008/25/8/E12.

    Article  PubMed  Google Scholar 

  41. Gu Y, Dong J, Jiang X, Wang Y. Minimally invasive pedicle screws fixation and percutaneous vertebroplasty for the surgical treatment of thoracic metastatic tumors with neurologic compression. Spine (Phila Pa 1976). 2016;41(Suppl 19):B14–22. https://doi.org/10.1097/BRS.0000000000001811.

    Article  Google Scholar 

  42. Mobbs RJ, Sivabalan P, Li J. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci. 2011;18(6):741–9. https://doi.org/10.1016/j.jocn.2010.09.019.

    Article  PubMed  Google Scholar 

  43. Leichtle CI, Lorenz A, Rothstock S, Happel J, Walter F, Shiozawa T, Leichtle UG. Pull-out strength of cemented solid versus fenestrated pedicle screws in osteoporotic vertebrae. Bone Joint Res. 2016;5(9):419–26. https://doi.org/10.1302/2046-3758.59.2000580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang W, Liu C, Li J, Li H, Wu J, Liu H, Li C, Zhou Y. Comparison of the fenestrated pedicle screw and conventional pedicle screw in minimally percutaneous fixation for the treatment of spondylolisthesis with osteoporotic spine. Clin Neurol Neurosurg. 2019;183:105377. https://doi.org/10.1016/j.clineuro.2019.105377.

    Article  PubMed  Google Scholar 

  45. Choma TJ, Pfeiffer FM, Swope RW, Hirner JP. Pedicle screw design and cement augmentation in osteoporotic vertebrae: effects of fenestrations and cement viscosity on fixation and extraction. Spine (Phila Pa 1976). 2012;37(26):E1628–32. https://doi.org/10.1097/BRS.0b013e3182740e56.

    Article  Google Scholar 

  46. Vishnubhotla S, McGarry WB, Mahar AT, Gelb DE. A titanium expandable pedicle screw improves initial pullout strength as compared with standard pedicle screws. Spine J. 2011;11(8):777–81. https://doi.org/10.1016/j.spinee.2011.06.006.

    Article  PubMed  Google Scholar 

  47. Wu ZX, Cui G, Lei W, Fan Y, Wan SY, Ma ZS, Sang HX. Application of an expandable pedicle screw in the severe osteoporotic spine: a preliminary study. Clin Invest Med. 2010;33(6):E368–74. https://doi.org/10.25011/cim.v33i6.14587.

    Article  PubMed  Google Scholar 

  48. Cook SD, Salkeld SL, Whitecloud TS, et al. Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disorder Tech. 2000;13:230–6.

    Article  CAS  Google Scholar 

  49. Grob D, Daehn S, Mannion AF. Titanium mesh cages (TMC) in spine surgery. Eur Spine J. 2005;14(3):211–21.

    Article  Google Scholar 

  50. Keshavarzi S, Newman CB, Ciacci JD, Aryan HE. Expandable titanium cages for thoracolumbar vertebral body replacement: initial clinical experience and review of the literature. Am J Orthop (Belle Mead NJ). 2011;40(3):E35–9.

    Google Scholar 

  51. Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine (Phila Pa 1976). 2006;31(17):1983–2001. https://doi.org/10.1097/01.brs.0000229254.89952.6b.

    Article  Google Scholar 

  52. Galibert P, Deramond H, Rosat P, Le Gars D. Note préliminaire sur le traitement des angiomes vertébraux par vertébroplastie acrylique percutanée [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie. 1987;33(2):166–8.

    PubMed  CAS  Google Scholar 

  53. Jay B, Ahn SH. Vertebroplasty. Semin Interv Radiol. 2013;30(3):297–306. https://doi.org/10.1055/s-0033-1353483.

    Article  Google Scholar 

  54. Elnoamany H. Percutaneous vertebroplasty: a new serial injection technique to minimize cement leak. Asian Spine Journal. 2015;9(6):855–62. https://doi.org/10.4184/asj.2015.9.6.855.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heini PF, Orler R. Kyphoplasty for treatment of osteoporotic vertebral fractures. Eur Spine J. 2004;13(3):184–92. https://doi.org/10.1007/s00586-003-0654-4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Noriega D, Maestretti G, Renaud C, Francaviglia N, Ould-Slimane M, Queinnec S, Ekkerlein H, Hassel F, Gumpert R, Sabatier P, Huet H, Plasencia M, Theumann N, Kunsky A, Krüger A. Clinical performance and safety of 108 SpineJack implantations 1-year results of a prospective multicentre single-arm registry study. Biomed Res Int. 2015:2015173872, 10.11552015173872.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nath, C. (2022). Posterior Thoracic Implants. In: Banerjee, A., Biberthaler, P., Shanmugasundaram, S. (eds) Handbook of Orthopaedic Trauma Implantology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6278-5_108-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6278-5_108-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6278-5

  • Online ISBN: 978-981-15-6278-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Posterior Thoracic Spinal Implants
    Published:
    19 July 2023

    DOI: https://doi.org/10.1007/978-981-15-6278-5_108-2

  2. Original

    Posterior Thoracic Implants
    Published:
    26 October 2022

    DOI: https://doi.org/10.1007/978-981-15-6278-5_108-1