Skip to main content

Stimuli-Responsive Polymers for Cancer Nanomedicines

  • Chapter
  • First Online:
  • 452 Accesses

Abstract

Chemotherapy involves many anticancer drugs, which have mild to severe adverse effects, when administered in conventional dosage forms. However, the lack of adequate supply of drug to the target site, as well as biodistribution to irrelevant body compartments has limited such drug-delivery systems. The major challenge in the delivery of such drugs is the site specificity. This task can be made simpler to a remarkable extent by employing stimuli-responsive polymers for designing nanocarriers. The stimuli may be physical, chemical, or biological, but should be sufficient enough to elicit structural changes in those polymers at the local site to enable the release of drugs in a controlled manner. The cancer cells exaggerate some biological phenomena as compared to the normal cells, which can be utilized as site-specific stimuli. Nanocarriers fabricated by using these polymers respond to stimuli like pH, temperature, redox potential light, etc. Multiple stimuli responsiveness can also be exploited for more specific drug delivery. This area of research seems to be very promising by exploring the physiological environment minutely. This chapter highlights the recent trends in different stimuli-responsive polymers, especially for delivering anticancer drug and challenges on the way of developing nanoformulations as well as their clinical translation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIBN:

Azobisisobutyronitrile

CRP:

Controlled Radical Polymerisation

CST:

Critical Solution Temperature

DOX:

Doxorubicin

HLB:

Hydrophilic Lipophilic Balance

LCST:

Lower critical solution temperature

MMPs:

Matrix metalloproteinases

MTX:

Methotrexate

PEG:

Poly Ethylene Glycol

PEtOx:

Poly(N-ethyl oxazoline)

PMVE:

Poly(methyl vinyl ether)

PNIPAM:

poly (N -isopropylacrylamide)

PNP:

Polymeric Nanoparticles

PNVC:

Poly(N-vinylcaprolactam)

POZ:

Poly(Oxazoline)

RAFT:

Reversible-Addition Fragmentation Chain-Transfer

ROS:

Reactive Oxygen Species

SRPs:

Stimuli-Responsive Polymers

References

  1. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  PubMed  CAS  Google Scholar 

  2. Zulkifli AA, Tan FH, Putoczki TL, Stylli SS, Luwor RB (2017) STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol Cell Endocrinol 451:15–23

    Article  CAS  PubMed  Google Scholar 

  3. Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H et al (2015) Classification of stimuli–responsive polymers as anticancer drug delivery systems. Drug Deliv 22(2):145–155

    Article  CAS  PubMed  Google Scholar 

  4. Alsurafi A, Curtis A, Lamprou DA, Hoskins C (2018) Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics 10:136

    Article  CAS  Google Scholar 

  5. Soni G, Yadav KS (2014) High encapsulation efficiency of poloxamer based injectable thermoresponsive hydrogels of etoposide. Pharm Dev Technol 19:651–661

    Article  CAS  PubMed  Google Scholar 

  6. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 12:991

    Article  CAS  PubMed  Google Scholar 

  7. Haijun Y, Zhirui C, Pengcheng Y, Chengyue G, Bing F, Tongying J et al (2015) pH and NIR Light-Responsive Micelles with Hyperthermia-Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Adv Funct Mater. 25(17):2489–2500

    Article  CAS  Google Scholar 

  8. Nanomedicine carrier realizing pH and reducibility dual response and preparation method of nano medicine carrier. CN108635583A (2018)

    Google Scholar 

  9. Son S, Rao NV, Ko H, Shin S, Jeon J, Han HS et al (2018) Carboxymethyl dextranbased hypoxia-responsive nanoparticles for doxorubicin delivery. Int J Biol Macromol 110:399–405

    Article  CAS  PubMed  Google Scholar 

  10. Dongdong L, Liyi M, Yanxin A, Yu L, Yuxin L, Lu W et al (2016) Thermoresponsive nanogel-encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Adv Funct Mater 26(26):4749–4759

    Article  CAS  Google Scholar 

  11. Zhao Y, Tavares AC, Gauthier MA (2016) Nano-engineered electro-responsive drug delivery systems. J Mater Chem B 4:3019–3030

    Article  CAS  PubMed  Google Scholar 

  12. James HP, John R, Alex A, Anoop KR (2013) Smart Polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B 4(2):120–127

    Article  Google Scholar 

  13. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W (2012) Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 7:9

    Article  CAS  PubMed  Google Scholar 

  14. Shi JJ, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  PubMed  Google Scholar 

  15. Tang H, Zhao W, Yu J, Li Y, Zhao C (2019) Recent development of pH-responsive polymers for cancer nanomedicine. Molecule 24(1):4

    Article  CAS  Google Scholar 

  16. Thambi T, Park JH, Lee DS (2016) Stimuli-responsive polymersomes for cancer therapy. Biomater Sci 4(1):55–69

    Article  CAS  PubMed  Google Scholar 

  17. Fu L, Yuan P, Ruan Z, Liu L, Li T, Yan L (2017) Ultra-pH-sensitive polypeptide micelles with large fluorescence off/on ratio in near infrared range. Polym Chem 8:1028–1038

    Article  CAS  Google Scholar 

  18. Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal HMN (2019) Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecule 24:1117

    Article  CAS  Google Scholar 

  19. Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J (2011) Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf B Biointerfaces 87:454–463

    Article  CAS  PubMed  Google Scholar 

  20. Crucho CIC (2014) Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 10:1–16

    Google Scholar 

  21. Jia Z, Liu J, Boyer C, Davis TP, Bulmus V (2009) Functional disulfide-stabilized polymer-protein particles. Biomacromolecules 10:3253–3258

    Article  CAS  PubMed  Google Scholar 

  22. Xu Z, Liu S, Kang Y, Wang M (2015) Glutathione-responsive polymeric micelles formed by a biodegradable amphiphilic triblock copolymer for anticancer drug delivery and controlled release. ACS Biomater Sci Eng 1(7):585–592

    Article  CAS  PubMed  Google Scholar 

  23. Panieri E, Santoro MM (2015) ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 72(17):3281–3303

    Article  CAS  PubMed  Google Scholar 

  24. Burgoyne JR, Oka S, Ale-Agha N, Eaton P (2013) Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. Antioxid Redox Signal 18(9):1042–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saravanakumar G, Kim J, Kim WJ (2017) Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci 4(1):1600124

    Article  CAS  Google Scholar 

  26. Suk Shim M, Xia Y (2013) A Reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells. Angew Chem Int 52(27):6926–6929

    Article  CAS  Google Scholar 

  27. Li Q, Wen Y, Wen J, Zhang YP, Xu XD, Victorious A et al (2016) A new biosafe reactive oxygen species (ROS)-responsive nanoplatform for drug delivery. RSC Adv 6(45):38984–38989

    Article  CAS  Google Scholar 

  28. Deepagan VG, Kwon S, You DG, Nguyen VQ, Um W, Ko H et al (2016) In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 103:56–66

    Article  CAS  PubMed  Google Scholar 

  29. Thambi T, Veerasikku GD, Yoon H, Seung Han H, Seol-Hee K, Son S et al (2013) Biomaterials 35(5):1735–1743

    Article  PubMed  CAS  Google Scholar 

  30. Thambi T, Son S, Lee DS, Park JH (2016) Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater 29:261–270

    Article  CAS  PubMed  Google Scholar 

  31. Perche F, Biswas S, Wang T, Zhu L, Torchilin VP (2014) Hypoxia-targeted siRNA delivery. Angew Chem Int Ed 53(13):3362–3366

    Article  CAS  Google Scholar 

  32. Terada T, Iwai M, Kawakami S et al (2006) Novel PEG-matrix metalloproteinase- 2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111:333–342

    Article  CAS  PubMed  Google Scholar 

  33. Shargh VH, Hondermarck H, Liang M (2017) Gelatin-albumin hybrid nanoparticles as matrix metalloproteinases-degradable delivery systems for breast cancer therapy. Nanomedicine (Lond) 12:977–989

    Article  CAS  Google Scholar 

  34. Pethe AM, Yadav KS (2019) Polymers, responsiveness and cancer therapy. Artif Cell Nanomed Biotechnol 47(1):395–405

    Article  CAS  Google Scholar 

  35. Loh XJ, Del Barrio J, Toh PPC (2012) Triply triggered doxorubicin release from supra molecular nano containers. Biomacromolecules 13:84–91

    Article  CAS  PubMed  Google Scholar 

  36. Fu X, Hosta-Rigau L, Chandrawati R, Cui J (2018) Multi-stimuli-responsive polymer particles, films, and hydrogels for drug delivery. Chem 4(9):2084–2107

    Article  CAS  Google Scholar 

  37. Almeida H, Amaral MH, Labao P (2012) Temperature and pH stimuli responsive polymers and their applications in controlled and self-regulated drug delivery. J Appl Pharm Sci 2(6):01–10

    Google Scholar 

  38. Sang X, Yang Q, Shi G, Zhang L, Wang D, Ni C (2018) Preparation of pH/redox dual responsive polymeric micelles with enhanced stability and drug controlled release. Mat Sci Eng C 91:727–733

    Article  CAS  Google Scholar 

  39. Du J, Choi B, Liu Y, Feng A, Thang SH (2019) Degradable pH and redox dual responsive nanoparticles for efficient covalent drug delivery. Polym Chem 2019(10):1291–1298

    Article  Google Scholar 

  40. Schattling P, Jochum F, Theato P (2014) Multi stimuli responsive polymers-the all-in-one talent. Polym Chem 5:25–36

    Article  CAS  Google Scholar 

  41. Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly (N-isopropyl acrylamide) and poly (N-isopropyl methacrylamide). J Phys Chem 93:3311–3313

    Article  CAS  Google Scholar 

  42. Gandhi A, Paul A, Sen SO, Sen KK (2015) Studies on thermo-responsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci 10:99–107

    Article  Google Scholar 

  43. Aoshima S, Kanaoka S (2008) Synthesis of stimuli-responsive polymers by living polymerization: poly(N -Isopropylacrylamide) and poly(vinyl ether)S. Adv Polym Sci 210:169–208

    Article  CAS  Google Scholar 

  44. Hoogenboom R (2014) Temperature-responsive polymers: properties, synthesis and applications. Smart Polym Appl 2014:15–44

    Google Scholar 

  45. Lowe AB, McCormick CL (2007) Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co) polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351

    Article  CAS  Google Scholar 

  46. Kirsh YE (1998) Water soluble poly-N-vinylamides: synthesis and physicochemical properties. John Wiley & Sons, Inc., Chichester

    Google Scholar 

  47. Alvarez-Lorenzo C, Concheiro A (2014) Smart drug delivery systems: from fundamentals to the clinic. Chem Commun 50:7743–7765

    Article  CAS  Google Scholar 

  48. Dimitrov I, Trzebicka B, Müller AH, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  49. Schild HG (1992) Poly(N -isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  50. Schmaljohann D (2006) Thermo and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  PubMed  Google Scholar 

  51. Moerkerke R, Meeussen F, Koningsveld R (1998) Phase transitions in swollen networks. Swelling behavior of radiation cross-linked poly(vinyl methyl ether) in water. Macromolecules 31:2223–2229

    Article  CAS  Google Scholar 

  52. Prabaharan M (2015) Chitosan based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322

    Article  CAS  PubMed  Google Scholar 

  53. Vivek R, Babu Nipun V, Thangam R, Subramanian KS, Kannan S (2013) pH responsive drug delivery of chitosan nanoparticles as tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces 111:117–123

    Article  CAS  PubMed  Google Scholar 

  54. Methachan B, Thanapprapasr K (2017) Polymer-based materials in cancer treatment: from therapeutic carrier and ultrasound contrast agent to theranostic applications. Ultrasound Med Biol 43(1):69–82

    Article  PubMed  Google Scholar 

  55. Şenel S, Kremer MJ, Kaş S, Wertz PW, Hincal AA, Squier CA (2000) Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21:2067–2071

    Article  PubMed  Google Scholar 

  56. Reyes OF (2014) pH-responsive polymers: properties, synthesis and applications. In: Smart polymers and their applications. Woodhead Publishing, Sawston, pp 45–92

    Chapter  Google Scholar 

  57. Alemdaro CDZ, Celebi N, Zor F, Ozturk S, Erdoğan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327

    Article  Google Scholar 

  58. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21

    Article  CAS  PubMed  Google Scholar 

  59. Rekha MR, Sharma CP (2007) Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 20(2):001–006

    Google Scholar 

  60. Nogusa H, Yamamoto K, Yano T, Kajiki M, Hamana H, Okuno S (2000) Distribution characteristics of carboxymethylpullulan-peptide-doxorubicin conjugates in tumor-bearing rats: different sequence of peptide spacers and doxorubicin contents. Biol Pharm Bull 23(5):621–626

    Article  CAS  PubMed  Google Scholar 

  61. Na K, Seong Lee E, Bae YH (2003) Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Cont Rel 87(1–3):3–13

    Article  CAS  Google Scholar 

  62. MacKay JA, Chen MJR, Liu W, Simnick AJ, Chilkoti A (2009) Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater 8:993–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gabizon A (2001) A: pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 19(4):424–436

    Article  CAS  Google Scholar 

  64. Wen H, Li Y (2014) Redox sensitive nanoparticles with disulfide bond linked sheddable shell for intracellular drug delivery. Med Chem 4(11):748–755

    Article  CAS  Google Scholar 

  65. Lu D, Wen X, Liang J, Gu Z, Zhang X, Fan Y (2009) A pH‐sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res Part B 89B:177–183

    Article  CAS  Google Scholar 

  66. MacEwan SR, Callahan DJ, Chilkoti A (2010) Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine 5(5):793–806

    Article  CAS  PubMed  Google Scholar 

  67. Jennifer IH, Twan L, Marianne BA, Sanyogitta P, Gert S, Simon TB (2017) Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev 108:25–38

    Article  CAS  Google Scholar 

  68. Hu FQ, Zhang YY, You J, Yuan H, Du YZ (2012) pH triggered doxorubicin delivery of pegylated glycolipid conjugate micelles for tumor targeting therapy. Mol Pharm 9:2469–2478

    Article  CAS  PubMed  Google Scholar 

  69. Wu Y, Chen W, Meng F, Wang Z, Cheng R, Deng C et al (2012) Core-crosslinked pH-sensitive degradable micelles: a promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J Control Release 164:338–345

    Article  CAS  PubMed  Google Scholar 

  70. Cheng C, Wei H, Shi BX et al (2008) Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target. Biomaterials 29(4):497–505

    Article  CAS  PubMed  Google Scholar 

  71. Zhang T, Huang S, Lin H et al (2017) Enzyme and Ph-responsive nanovehicles for intracellular drug release and photodynamic therapy. New J Chem 41:2468–2478

    Article  CAS  Google Scholar 

  72. Basuki JS, Duong HTT, Macmillan A, Erlich RB, Esser L, Akerfeldt MC, Whan RM, Kavallaris M, Boyer C, Davis TP (2013) Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7:10175–10189

    Article  CAS  PubMed  Google Scholar 

  73. Sadighian S, Rostamizadeh K, Hosseini MJ et al (2017) Magnetic nanogels as dual triggered anticancer drug delivery: toxicity evaluation on isolated rat liver mitochondria. Toxicol Lett 278:18–29

    Article  CAS  PubMed  Google Scholar 

  74. Fan T, Li M, Wu X et al (2011) Preparation of thermoresponsive and phsensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloids Surf B Biointerfaces 88:593–600

    Article  CAS  PubMed  Google Scholar 

  75. Crommelin DJA, Florence AT, Wu Y, Chen W, Meng F, Wang Z, Cheng R, Deng C et al (2012) Core-crosslinked pH-sensitive degradable micelles: a promising approach to resolve the extracellular stability versus intracellular drug release dilemma. J. Control Release 164:338–345. Towards More Effective Advanced Drug Delivery

    Article  CAS  Google Scholar 

  76. Langer CJ et al (2008) Phase III trial comparing paclitaxel poliglumex (CT-2103, PPX) in combination with carboplatin versus standard paclitaxel and carboplatin in the treatment of PS 2 patients with chemotherapy-naive advanced non-small cell lung cancer. J Thorac Oncol 3(6):623–630

    Article  PubMed  Google Scholar 

  77. Melancon MP et al (2007) A novel method for imaging in vivo degradation of poly(lglutamic acid), a biodegradable drug carrier. Pharm Res 24(6):1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhu L, Torchilin VP (2013) Stimulus-responsive nanopreparations for tumor targeting. Integr Biol 5(1):96–107

    Article  CAS  Google Scholar 

  79. Abbaspourrad A, Ravanfar R (2019) Systems and methods for controlling the release from enzyme-responsive microcapsules with a smart natural shell. US20190254302A1

    Google Scholar 

  80. Sau S, Iyer AK, Alsaab H (2019) Method of treatment for solid tumours containing hypoxia and/or stroma features. WO2019133914A1

    Google Scholar 

  81. Liu X, Yaszemski MJ, Lu L (2019) Expansible cross linked polymerosome for pH sensitive delivery of anticancer drugs. US10188606B2

    Google Scholar 

  82. Wang HL, Worrel GA, Lennon VA, Dong H (2019) Modulation of extracellular vesicles with electrical stimulation. WO2019136268A1

    Google Scholar 

  83. Davey NS (2019) Adjustable rate drug delivery implantable devices. US10406336B2

    Google Scholar 

  84. Thayumanavan S (2019) Crosslinked polymers nano-assemblies and uses thereof. US20190083649A1

    Google Scholar 

  85. Naasani I (2018) Light responsive quantum dot drug delivery system. WO2018167618A1

    Google Scholar 

  86. Lin CJ, Wang TW (2018) Methods of preparing stimuli responsive multifunctional nanoparticles. US10117837B2

    Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no conflict of interest. The Figures and Tables used in this chapter are original and prepared by the authors themselves.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathy, S., Kesharwani, R., Patel, D.K., Das, M.K. (2020). Stimuli-Responsive Polymers for Cancer Nanomedicines. In: Das, M.K., Pathak, Y.V. (eds) Nano Medicine and Nano Safety. Springer, Singapore. https://doi.org/10.1007/978-981-15-6255-6_12

Download citation

Publish with us

Policies and ethics