Skip to main content

Optoelectronic Properties of Nanocrystalline Silicon-Based Superlattice Structures

  • Chapter
  • First Online:
Recent Advances in Thin Films

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 916 Accesses

Abstract

Superlattice structures consist of alternate layers of two different materials, each having a fixed thickness. These structures thus have an additional periodicity along the growth direction and thus behave like a quasi-crystal with a periodicity much larger than that in single-crystal materials having a periodicity of the order of lattice constant of crystal and exhibit several interesting phenomena. The optical, electrical and other physical properties of these structures are significantly different from those of individual layers. In the present article, we present some interesting experimental results observed for nc-Si/a-Si:H-based superlattice structures. Though the lattice constant and electron affinity of nc-Si/a-Si:H are nearly matched, their structural, electrical and optical properties are significantly different. Our studies show that the electrical transport properties of these structures can be tuned by controlling the thickness of the individual layer. The superlattice structures with thick individual layers show excess conductivity in dark after exposure to light. On the other hand, strong photoluminescence (PL) signal in the visible range is observed for the structures with thin individual layers and the PL peak energy depends upon the thickness of the nc-Si layer. The nc-Si/a-Si:H superlattice structures can be used for silicon-based photonic devices in the integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Esaki, R. Tsu, IBM J. Res. Dev. 14, 61 (1970)

    CAS  Google Scholar 

  2. L. Eskai, IEEE J. Quantum Electron. 22, 1611 (1986)

    Google Scholar 

  3. A. Wacker, Phys. Rep. 3(357), 1 (2002)

    Google Scholar 

  4. B. Movaghar, Semicond. Sci. Technol. 2, 185 (1987)

    CAS  Google Scholar 

  5. N. Chen, X. Li, X. Wang, S. Xie, W.Q. Tian, S. Zhang, H. Sun, IEEE Trans. Nanotechnol. 17, 140 (2018)

    CAS  Google Scholar 

  6. H. Xu, B. Chen, F. Jin, Z. Guo, G. Gao, F. Chen, W. Wu, Mater. Res. Express 3, 126403 (2016)

    Google Scholar 

  7. H.J. Haugan, F. Szmulowicz, K. Mahalingam, G.J. Brown, S.R. Munshi, B. Ullrich, Appl. Phys. Lett. 87, 261106 (2005)

    Google Scholar 

  8. G.H. Döhler, Physica Status Solidi (b) 52, 533 (1972)

    Google Scholar 

  9. G.H. Döhler, J. Vac. Sci. Technol. 16, 851 (1979)

    Google Scholar 

  10. G.H. Döhler, H. Künzel, K. Ploog, Phys. Rev. B 25, 2616 (1982)

    Google Scholar 

  11. M. Hundhausen, L. Ley, R. Carius, Phys. Rev. Lett. 53, 1598 (1984)

    CAS  Google Scholar 

  12. J. Kakalios, H. Fritzsche, Phys. Rev. Lett. 53, 1602 (1984)

    CAS  Google Scholar 

  13. A. Yadav, P. Agarwal, R. Biswas, J. Mater. Sci.: Mater. Electron. 30, 4696 (2019)

    CAS  Google Scholar 

  14. P. Photopoulos, A.G. Nassiopoulou, D.N. Kouvatsos, A. Travlos, Mater. Sci. Eng., B 69–70, 345 (2000)

    Google Scholar 

  15. D.J. Lockwood, Z.H. Lu, J.M. Baribeau, Phys. Rev. Lett. 76, 539 (1996)

    CAS  Google Scholar 

  16. S. Pattnaik, N. Chakravarty, R. Biswas, V. Dalal, D. Slafer, Sol. Energy Mater. Sol. Cells 129, 115 (2014)

    CAS  Google Scholar 

  17. B.I. Sthal, Ph.D. thesis submitted to University of Rosensburg, Germany, 2008

    Google Scholar 

  18. D.T. Norton Jr, Ph.D. thesis submitted to University of Iowa, Iowa, 2013

    Google Scholar 

  19. M.B.H. Breese, D. Mangaiyarkarasi, Opt. Express 15, 5537 (2007)

    Google Scholar 

  20. Y. Nakata, M. Asada, Y. Suematsu, Electron. Lett. 22, 58 (1986)

    Google Scholar 

  21. Y. Nakata, M. Asada, Y. Suematsu, Surf. Sci. 174, 519 (1986)

    CAS  Google Scholar 

  22. G.D. Mahan, L.M. Woods, Phys. Rev. Lett. 80, 4016 (1998)

    CAS  Google Scholar 

  23. L.W. Whitlow, T. Hirano, J. Appl. Phys. 78, 5460 (1995)

    CAS  Google Scholar 

  24. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    CAS  Google Scholar 

  25. L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, M. Zacharias, P.M. Fauchet, J.P. McCaffrey, D.J. Lockwood, Appl. Phys. Lett. 72, 43 (1998)

    CAS  Google Scholar 

  26. M. Zacharias, L. Tsybeskov, K.D. Hirschman, P.M. Fauchet, J. Bläsing, P. Kohlert, P. Veit, J. Non-Cryst. Solids 227–230, 1132 (1998)

    Google Scholar 

  27. Y.-H. So, S. Huang, G. Conibeer, M.A. Green, Thin Solid Films 519, 5408 (2011)

    CAS  Google Scholar 

  28. A. Yadav, P. Agarwal, Superlattices Microstruct. 85, 776 (2015)

    CAS  Google Scholar 

  29. A. Yadav, P. Agarwal, Mater. Sci. Semicond. Process. 61, 5 (2017)

    CAS  Google Scholar 

  30. K. Ploog, G.H. Döhler, Adv. Phys. 32, 285 (1983)

    CAS  Google Scholar 

  31. S.C. Agarwal, S. Guha, J. Non-Cryst. Solids 77–78, 1097 (1985)

    Google Scholar 

  32. S.C. Agarwal, S. Guha, Phys. Rev. B 32, 8469 (1985)

    CAS  Google Scholar 

  33. G.S. Paul, P. Agarwal, J. Appl. Phys. 106, 103705 (2009)

    Google Scholar 

  34. D. Azulay, O. Millo, S. Silbert, I. Balberg, N. Naghavi, Appl. Phys. Lett. 86, 212102 (2005)

    Google Scholar 

  35. J.Y. Lin, H.X. Jiang, Phys. Rev. B 41, 5178 (1990)

    CAS  Google Scholar 

  36. H.X. Jiang, J.Y. Lin, Phys. Rev. Lett. 64, 2547 (1990)

    CAS  Google Scholar 

  37. D. Cammi, C. Ronning, Adv. Condens. Matter Phys. 2014, 5 (2014)

    Google Scholar 

  38. M.N. Islam, P.S. Dobal, H.D. Bist, S. Kumar, Solid State Commun. 107, 43 (1998)

    CAS  Google Scholar 

  39. H.J. Queisser, D.E. Theodorou, Phys. Rev. B 33, 4027 (1986)

    CAS  Google Scholar 

  40. Y.C.A. Shih, B.G. Streetman, Appl. Phys. Lett. 62, 2655 (1993)

    CAS  Google Scholar 

  41. T. Ishibashi, Y. Suzuki, H. Okamoto, Jpn. J. Appl. Phys. 20, L623 (1981)

    CAS  Google Scholar 

  42. V.K. Kononenko, H.W. Kunert, I.S. Manak, D.V. Ushakov, J. Appl. Spectrosc. 70, 115 (2003)

    CAS  Google Scholar 

  43. S. Tong, X.N. Liu, X.M. Bao, Appl. Phys. Lett. 66, 469 (1995)

    Google Scholar 

  44. L. Khriachtchev, S. Novikov, J. Lahtinen, J. Appl. Phys. 92, 5856 (2002)

    CAS  Google Scholar 

  45. K. Ou, S. Wang, M. Huang, Y. Zhang, Y. Wang, X. Duan, L. Yi, J. Lumin. 199, 34 (2018)

    CAS  Google Scholar 

  46. M.B.A.E. Wolf, Cambridge University Press, Cambridge, 1999

    Google Scholar 

  47. E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002), p. 425–500

    Google Scholar 

  48. A.K. Ghatak, K. Thyagarajan, Optical electronics (Cambridge University Press, Cambridge, 1989), p. 57

    Google Scholar 

  49. J.A. Pradeep, Ph.D. thesis submitted to IIT Guwahati, India, 2011

    Google Scholar 

  50. A. Yadav, Ph.D. thesis submitted to IIT Guwahati, India, 2018

    Google Scholar 

  51. A. Yadav, P. Agarwal, Mater. Today: Proc. 4, 12722 (2017)

    Google Scholar 

  52. A. Kastalsky, J.C.M. Hwang, Solid State Commun. 51, 317 (1984)

    CAS  Google Scholar 

  53. M. Hundhausen, L. Ley, Phys. Rev. B 32, 6655 (1985)

    CAS  Google Scholar 

  54. F.C. Su, S. Levine, P.E. Vanier, F.J. Kampas, Appl. Phys. Lett. 47, 612 (1985)

    CAS  Google Scholar 

  55. K.H. Jun, K.S. Lim, J. Non-Cryst. Solids 261, 268 (2000)

    CAS  Google Scholar 

  56. V.L. Dalal, A. Madhavan, J. Non-Cryst. Solids 354, 2403 (2008)

    CAS  Google Scholar 

  57. A. Madan, P.G. Le Comber, W.E. Spear, J. Non-Cryst. Solids 20, 239 (1976)

    CAS  Google Scholar 

  58. G.W. Neudeck, A.K. Malhotra, J. Appl. Phys. 46, 239 (1975)

    Google Scholar 

  59. N.B. Goodman, H. Fritzsche, H. Ozaki, J. Non-Cryst. Solids 35–36, Part 1, 599 (1980)

    Google Scholar 

  60. W.E. Spear, P.G. Le Comber, J. Non-Cryst. Solids 8–10, 727 (1972)

    Google Scholar 

  61. T. Tiedje, C.R. Wronski, B. Abeles, J.M. Cebulka, Solar Cells 2, 301 (1980)

    CAS  Google Scholar 

  62. M. Hirose, T. Suzuki, G.H. Dohler, Appl. Phys. Lett. 34, 234 (1979)

    Google Scholar 

  63. Y.T.H. Okushi, S. Yamasaki, H. Oheda, K. Tanaka, J. Phys. Colloques 42, C4 (1981)

    Google Scholar 

  64. J. Beichler, H. Mell, K. Weber, J. Non-Cryst. Solids 59–60, Part 1, 257 (1983)

    Google Scholar 

  65. N.M. Johnson, J. Non-Cryst. Solids 59–60, Part 1, 265 (1983)

    Google Scholar 

  66. E. Bhattacharya, S. Guha, K.V. Krishna, D.R. Bapat, J. Appl. Phys. 53, 6285 (1982)

    CAS  Google Scholar 

  67. H.S. Soh, C. Lee, J. Jang, M.Y. Jung, S.S. Yoo, Appl. Phys. Lett. 63, 779 (1993)

    CAS  Google Scholar 

  68. S.B. Husain, M. Zulfequar, M.A. Majeed Khan, M. Husain, Curr. Appl. Phys. 4, 445 (2004)

    Google Scholar 

  69. A. Bozhko, M. Shupegin, T. Takagi, Diam. Relat. Mater. 11, 1753 (2002)

    CAS  Google Scholar 

  70. Z. Çaldıran, M. Şinoforoğlu, Ö. Metin, Ş. Aydoğan, K. Meral, J. Alloy. Compd. 631, 261 (2015)

    Google Scholar 

  71. W.D. Boer, J. Phys. Colloques 42, C4 (1981)

    Google Scholar 

  72. V. Lehmann, U. Gösele, Appl. Phys. Lett. 58, 856 (1991)

    CAS  Google Scholar 

  73. W.L. Wilson, P.F. Szajowski, L.E. Brus, Science 262, 1242 (1993)

    CAS  Google Scholar 

  74. S. Furukawa, T. Miyasato, Phys. Rev. B 38, 5726 (1988)

    CAS  Google Scholar 

  75. D.C. Hannah, J. Yang, N.J. Kramer, G.C. Schatz, U.R. Kortshagen, R.D. Schaller, ACS Photonics 1, 960 (2014)

    CAS  Google Scholar 

  76. O. Yukio, T. Keiji, T. Fumitaka, M. Hiroaki, K. Kenji, Jpn. J. Appl. Phys. 31, L365 (1992)

    Google Scholar 

  77. S. Veprek, F.A. Sarott, Z. Iqbal, Phys. Rev. B 36, 3344 (1987)

    CAS  Google Scholar 

  78. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support for fabricating rf-PECVD system was received from Department of Science and Technology (DST) [Grant No. DST/TM/SERI/2K11/78(G)]; and Defence Research and Development Organization (DRDO) [Grant No. ERIP/ER/0900376/M/01/1297], New Delhi, India. The Hot wire CVD system was fabricated through the financial support from Department of Science and Technology (DST) [Grant No. DSTSR-S2-CMP-32-2003]. The study was sponsored by the Council of Scientific and Industrial Research (CSIR), New Delhi, India [80(0082)/13/EMR(II)]. We also acknowledge the Department of Physics, IIT Guwahati and Centre for Instrument Facility (CIF), IIT Guwahati for different characterization facilities and other support. We also acknowledge the fruitful discussions with (Late) Professor Satish Chandra Agarwal (IIT Kanpur) and Professor Rana Biswas (Iowa state University, Ames, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agarwal, P., Yadav, A. (2020). Optoelectronic Properties of Nanocrystalline Silicon-Based Superlattice Structures. In: Kumar, S., Aswal, D. (eds) Recent Advances in Thin Films. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-6116-0_9

Download citation

Publish with us

Policies and ethics