Skip to main content

The GSL-Dependent Signaling

  • Chapter
  • First Online:
Glycosphingolipids Signaling
  • 188 Accesses

Abstract

GSLs recognize, bind, and interact with PM proteins including growth factor receptors (GFRs), tetraspanins (TSPs), receptor tyrosine kinases (RTKs), integrins, and nonreceptor cytoplasmic kinases including Src kinase family and G proteins in direct or non-direct mode. Such recognition and interaction contribute to the formation of glycosynaptic microdomains or lipid rafts to regulate GSLs-dependent cell behaviors such as attachment, adhesion, endocytosis, growth, and motility [19]. Gangliosides play key roles through glycan-targeted interactions with membrane receptor proteins (Fig. 3.1). In receptor-mediated biological events, they modulate cell-cell interaction frequently exploited by pathogenic agents such as viruses and bacterial toxins. They also modulate phosphorylating molecules via lateral binding to the membrane proteins of cells. For instance, they directly or indirectly inhibit such receptor-associated tyrosine kinases. In some cases, the interaction between specific gangliosides and cell surface receptor proteins needs posttranslational glycosylation of the PM glycoproteins. Such instances can explain the reason why GSLs-glycoproteins interactions are limited to specialized cases, but not to all the proteins. Gangliosides influence signaling of many GFRs which are currently well known. They include tyrosine kinase receptor (Trk) family, fibroblast GFR (FGFR), epidermal GFR (EGFR), basic FGFR (b-FGFR), platelet-derived GFR (PDGFR), nerve GFR (NGFR), insulin-like GFR (IGFR), insulin receptor, IGF-1 receptor, vascular endothelial GFR (VEGFR), glia cell-derived neurotrophic factor (GDNF), bradykinin 2 receptor (B2R), Fas (CD95) receptor, G protein-coupled receptor (GPCR), serotonin receptor, α1-adrenergic receptor (AR), amyloid-β (Aβ), estrogen receptor (ER), hepatocyte GFR (HGFR), transforming growth factor-β (TGF-β), α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and ionotropic glutamate receptor (AMPAR). For example, interactions of GM3-EGFR and GM3-specific RTK on cell surfaces are observed only in the glycosylation status of receptor proteins. Therefore, the GM3 seems to interact with N-glycosylated EGFR or glycosylated RTK to downregulate its RTK. However, specific ganglioside GM1 rather potentiates the neuritogenesis activity of neurotrophins, where gangliosides like GM1s enhance neurite genesis and formation in cultured primary neurons and neuroblastoma cells [116]. GM1 also promotes the dopaminergic and GABAnergic neuron functions in cultured mouse mesencephalic cells. Treatment of the central nerve system (CNS) with GM1 mimics the NGF effect on the cholinergic neuronal protection upon cortical damage and the hippocampal regeneration effect of the CNS cells [117]. In the molecular mechanism, it has been suggested that GM1 protects the degenerative neurons by stimulating the Trk NGF receptor which can be applicable for other neurotrophic growth factors [118], promoting MAPKs and cAMP response element-binding (CREB) molecules in the axotomized nerve retinal region and promoting the dimerization of neurotrophic factor, RTK [119]. Of particular interest are some conflicting outcomes having opposite effects of some gangliosides on the same receptors depending on cell type or tissue type. For example, some gangliosides are overexpressed and shed from tumor cells. Such gangliosides bind to normal cells in the tumor microenvironment, altering tumor cells-host cells interactions for the survival environmental of the tumor cells. However, the present chapter focuses on the biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russo D, Capolupo L, Loomba JS, Sticco L, D'Angelo G (2018) Glycosphingolipid metabolism in cell fate specification. J Cell Sci 131(24):jcs219204

    Article  PubMed  CAS  Google Scholar 

  2. Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485(2–3):63–99

    Article  CAS  PubMed  Google Scholar 

  3. Zhang X, Kiechle FL (2004) Review: glycosphingolipids in health and disease. Ann Clin Lab Sci 34(1):3–13

    PubMed  Google Scholar 

  4. Ferrari G, Greene LA (1998) Promotion of neuronal survival by GM1 ganglioside. Phenomenology and mechanism of action. Ann N Y Acad Sci 845:263–273

    Article  CAS  PubMed  Google Scholar 

  5. Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080

    Article  CAS  PubMed  Google Scholar 

  6. Lindquist S, Karitkina D, Langnaese K, Posevitz-Fejfar A, Schraven B, Xavier R, Seed B, Lindquist JA (2011) Phosphoprotein associated with glycosphingolipid-enriched microdomains differentially modulates SRC kinase activity in brain maturation. PLoS One 6(9):e23978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andrews NW, Almeida PE, Corrotte M (2014) Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 24(12):734–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi JS, Kim JA, Joo CK (2003) Activation of MAPK and CREB by GM1 induces survival of RGCs in the retina with axotomized nerve. Invest Ophthalmol Vis Sci 44:1747–1752

    Article  PubMed  Google Scholar 

  9. Bremer EG, Schlessinger J, Hakomori S (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261(5):2434–2440

    Article  CAS  PubMed  Google Scholar 

  10. Choi HJ, Chung TW, Kang SK, Lee YC, Ko JH, Kim JG, Kim CH (2006) Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression—transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway. Glycobiology 16(7):573–583

    Article  CAS  PubMed  Google Scholar 

  11. Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini FC, Hortobagyi G, Mani SA, Andreeff M (2012) Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 122:2066–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanai N, Nores GA, MacLeod C, Torres-Mendez CR, Hakomori S (1988) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 263(22):10915–10921

    Article  CAS  PubMed  Google Scholar 

  13. Yamaji T, Hanada K (2015) Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins. Traffic 60:511–518

    Google Scholar 

  14. Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:9–15

    Article  Google Scholar 

  15. Kawashima N, Yoon SJ, Itoh K, Nakayama K (2009) Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem 284(10):6147–6155

    Article  CAS  PubMed  Google Scholar 

  16. Choi HJ, Chung TW, Kim SJ, Cho SY, Lee YS, Lee YC, Ko JH, Kim CH (2008) The AP-2alpha transcription factor is required for the ganglioside GM3-stimulated transcriptional regulation of a PTEN gene. Glycobiology 18(5):395–407

    Article  CAS  PubMed  Google Scholar 

  17. Hanai N, Dohi T, Nores GA, Hakomori S (1988) A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem 263(13):6296–6301

    Article  CAS  PubMed  Google Scholar 

  18. Zurita AR, Maccioni HJ, Daniotti JL (2001) Modulation of epidermal growth factor receptor phosphorylation by endogenously expressed gangliosides. Biochem J 355(Pt 2):465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krengel U, Bousquet PA (2014) Molecular recognition of gangliosides and their potential for cancer immunotherapies. Front Immunol 5:325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE (2013) Architecture and membrane interactions of the EGF receptor. Cell 152(3):557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Todeschini AR, Dos Santos JN, Handa K, Hakomori S (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/ cMet-mediated pathway. Proc Natl Acad Sci U S A 105:1925–1930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Todeschini AR, Dos Santos JN, Handa K, Hakomori S (2007) Ganglioside GM2-tetraspanin CD82 through glycosynapse. J Biol Chem 282:8123–8133

    Article  CAS  PubMed  Google Scholar 

  23. Liang YJ, Wang CY, Wang IA, Chen YW, Li LT, Lin CY, Ho MY, Chou TL, Wang YH, Chiou SP, Lin YJ, Yu J (2017) Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget 8(29):47454–47473

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori S (2013) Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci U S A 110:4968–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Li R, Ladisch S (2004) Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J Biol Chem 279(35):36481–36489

    Article  CAS  PubMed  Google Scholar 

  26. Mirkin BL, Clark SH, Zhang C (2002) Inhibition of human neuroblastoma cell proliferation and EGF receptor phosphorylation by gangliosides GM1, GM3, GD1A and GT1B. Cell Prolif 35(2):105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu S, Withers DA, Hakomori S (1998) Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB. J Biol Chem 273:2517–2525

    Google Scholar 

  28. Toledo MS, Suzuki E, Handa K, Hakomori S (2005) Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 280(16):16227–16234

    Article  CAS  PubMed  Google Scholar 

  29. Hakomori SI, Handa K (2015) GM3 and cancer. Glycoconj J 32(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  30. Schnaar RL (2010) Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 584(9):1741–1747

    Article  CAS  PubMed  Google Scholar 

  31. Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36(11):1225–1229

    Article  CAS  PubMed  Google Scholar 

  32. Harlalka GV, Lehman A, Chioza B, Baple EL, Maroofian R, Cross H, Sreekantan-Nair A, Priestman DA, Al-Turki S, McEntagart ME, Proukakis C, Royle L, Kozak RP, Bastaki L, Patton M, Wagner K, Coblentz R, Price J, Mezei M, Schlade-Bartusiak K, Platt FM, Hurles ME, Crosby AH (2013) Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136(Pt 12):3618–3624

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kojima N, Hakomori S (1989) Specific interaction between gangliotriaosylceramide (Gg3) and sialosyllactosylceramide (G(M3)) as a basis for specific cellular recognition between lymphoma and melanoma cells. J Biol Chem 264(34):20159–20162

    Article  CAS  PubMed  Google Scholar 

  34. Ichikawa N, Iwabuchi K, Kurihara H, Ishii K, Kobayashi T, Sasaki T, Hattori N, Mizuno Y, Hozumi K, Yamada Y, Arikawa-Hirasawa E (2009) Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 122(Pt 2):289–299

    Article  CAS  PubMed  Google Scholar 

  35. Mutoh T, Hamano T, Tokuda A, Kuriyama M (2000) Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells). Glycoconj J 17(3–4):233–237

    Article  CAS  PubMed  Google Scholar 

  36. Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40(7):407–418

    Article  CAS  PubMed  Google Scholar 

  37. Wu, et al. (2009) Sodium-calcium exchanger complexed with GM1 ganglioside in nuclear membrane transfers calcium from nucleoplasm to endoplasmic reticulum. Proc Natl Acad Sci U S A 106:10829–10834

    Google Scholar 

  38. Fukuda Y, Fukui T, Hikichi C, Ishikawa T, Murate K, Adachi T, Imai H, Fukuhara K, Ueda A, Kaplan AP, Mutoh T (2015) Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res 1596:13–21

    Article  CAS  PubMed  Google Scholar 

  39. Longo FM, Massa SM (2013) Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease. Nat Rev 12:507–525

    Google Scholar 

  40. Scarpi D, Cirelli D, Matrone C, Castronovo G, Rosini P, Occhiato EG, Romano F, Bartali L, Clemente AM, Bottegoni G, Cavalli A, De Chiara D, Bonini P, Calissano P, Palamara AT, Garaci E, Torcia MG, Guarna A, Cozzolino F (2012) Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis 3:e339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Pasquale E, Fantini J, Chahinian H, Maresca M, Taïeb N, Yahi N (2010) Altered ion channel formation by the Parkinson's-disease-linked E46K mutant of alpha-synuclein is corrected by GM3 but not by GM1 gangliosides. J Mol Biol 397(1):202–218

    Article  PubMed  CAS  Google Scholar 

  42. Huang F, Dong X, Zhang L, Zhang X, Zhao D, Bai X, Li Z (2009) The neuroprotective effects of NGF combined with GM1 on injured spinal cord neurons in vitro. Brain Res Bull 79(1):85–88

    Article  CAS  PubMed  Google Scholar 

  43. Farooqui T, Franklin T, Pearl DK, Yates AJ (1997) Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J Neurochem 68:2348–2355

    Article  CAS  PubMed  Google Scholar 

  44. Chiricozzi E, Pomè DY, Maggioni M, Di Biase E, Parravicini C, Palazzolo L, Loberto N, Eberini I, Sonnino S (2017) Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J Neurochem 143(6):645–659

    Article  CAS  PubMed  Google Scholar 

  45. Zakharova IO, Sokolova TV, Vlasova YA, Furaev VV, Rychkova MP, Avrova NF (2014) GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cells against hydrogen peroxide toxicity. Neurochem Res 39(11):2262–2275

    Article  CAS  PubMed  Google Scholar 

  46. Forsayeth J, Hadaczek P (2018) Ganglioside metabolism and Parkinson’s disease. Front Neurosci 12:45

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhao J, Singleton PA, Brown ME, Dudek SM, Garcia JG (2009) Phosphotyrosine protein dynamics in cell membrane rafts of sphingosine-1-phosphate-stimulated human endothelium: role in barrier enhancement. Cell Signal 21(12):1945–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fantini J, Yahi N (2011) Molecular basis for the glycosphingolipid-binding specificity of α-synuclein: key role of tyrosine 39 in membrane insertion. J Mol Biol 408:654–669

    Article  CAS  PubMed  Google Scholar 

  49. Yahi N, Fantini J (2014) Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide. PLoS One 9:e104751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gavella M, Kveder M, Lipovac V (2010) Modulation of ROS production in human leukocytes by ganglioside micelles. Braz J Med Biol Res 43:942–949

    Article  CAS  PubMed  Google Scholar 

  51. Kanatsu Y, Chen NH, Mitoma J, Nakagawa T, Hirabayashi Y, Higashi H (2012) Gangliosides stimulate bradykinin B2 receptors to promote calmodulin kinase II-mediated neuronal differentiation. J Biochem 152(1):63–72

    Article  CAS  PubMed  Google Scholar 

  52. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen N, Furuya S, Doi H, Hashimoto Y, Kudo Y, Higashi H (2003) Ganglioside/calmodulin kinase II signal inducing cdc42-mediated neuronal actin reorganization. Neuroscience 120:163–176

    Article  CAS  PubMed  Google Scholar 

  54. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510

    Article  CAS  PubMed  Google Scholar 

  55. Bayer KU, Löhler J, Schulman H, Harbers K (1999) Developmental expression of the CaM kinase II isoforms: ubiquitous γ- and δ-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res 70:147–154

    Article  CAS  PubMed  Google Scholar 

  56. Mizumura K, Sugiura T, Katanosaka K, Banik RK, Kozaki Y (2009) Excitation and sensitization of nociceptors by bradykinin: what do we know? Exp Brain Res 196:53–65

    Article  CAS  PubMed  Google Scholar 

  57. Shimazaki A, Nakagawa T, Mitoma J, Higashi H (2012) Gangliosides and chondroitin sulfate desensitize and internalize B2 bradykinin receptors. Biochem Biophys Res Commun 420(1):193–198

    Article  CAS  PubMed  Google Scholar 

  58. Tsuji S, Yamashita T, Matsuda Y, Nagai Y (1992) A novel glycosignaling system: GQ1b-dependent neuritogenesis of human neuroblastoma cell line, GOTO, is closely associated with GQ1b-dependent ecto-type protein phosphorylation. Neurochem Int 21:549–554

    Article  CAS  PubMed  Google Scholar 

  59. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  60. Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 5:333–339

    Article  Google Scholar 

  61. Huang YH, Lin Y, Brown TE, Han MH, Saal DB, Neve RL, Zukin RS, Sorg BA, Nestler EJ, Malenka RC, Dong Y (2008) CREB modulates the functional output of nucleus accumbens neurons: a critical role of N-methyl-D-aspartate glutamate receptor (NMDAR) receptors. J Biol Chem 283:2751–2760

    Article  CAS  PubMed  Google Scholar 

  62. Pascual A et al (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  CAS  PubMed  Google Scholar 

  63. Tansey MG et al (2000) GFRα-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 25:611–623

    Article  CAS  PubMed  Google Scholar 

  64. Hadaczek P et al (2015) GDNF signaling implemented by GM1 ganglioside; failure in Parkinson's disease and GM1-deficient murine model. Exp Neurol 263(2015):177–188

    Article  CAS  PubMed  Google Scholar 

  65. Hadjiconstantinou M et al (1989) GM1 ganglioside-induced recovery of nigrostriatal dopaminergic neurons after MPTP: an immunohistochemical study. Brain Res 484(1989):297–303

    Article  CAS  PubMed  Google Scholar 

  66. Schneider JS et al (1995) GM1 ganglioside rescues substantia nigra pars compacta neurons and increases dopamine synthesis in residual nigrostriatal dopaminergic neurons in MPTP-treated mice. J Neurosci Res 42(1995):117–123

    Article  CAS  PubMed  Google Scholar 

  67. Schneider JS, DiStefano L (1995) Response of the damaged dopamine system to GM1 and semisynthetic gangliosides: effects of dose and extent of lesion. Neuropharmacology 34(1995):489–493

    Article  CAS  PubMed  Google Scholar 

  68. Schneider JS et al (2013) A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J Neurol Sci 324(2013):140–148

    Article  CAS  PubMed  Google Scholar 

  69. Wu G et al (2011) Mice lacking major brain gangliosides develop Parkinsonism. Neurochem Res 36:1706–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu G et al (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008

    Article  CAS  PubMed  Google Scholar 

  71. Martinez Z et al (2007) GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    Article  CAS  PubMed  Google Scholar 

  72. Bartels T et al (2014) N-alpha-acetylation of α-synuclein increases its helical folding propensity, GM1 binding specificity and resistance to aggregation. PLoS One 9:e103727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Inokuchi J, Mizutani A, Jimbo M, Usuki S, Yamagishi K, Mochizuki H, Muramoto K, Kobayashi K, Kuroda Y, Iwasaki K, Ohgami Y, Fujiwara M (1997) Up-regulation of ganglioside biosynthesis, functional synapse formation, and memory retention by a synthetic ceramide analog (l-PDMP). Biochem Biophys Res Commun 237:595–600

    Article  CAS  PubMed  Google Scholar 

  75. Fujii S, Igarashi K, Sasaki H, Furuse H, Ito K, Kaneko K, Kato H, Inokuchi J, Waki H, Ando S (2002) Effects of the mono- and tetrasialogangliosides GM1 and GQ1b on ATP-induced long-term potentiation in hippocampal CA1 neurons. Glycobiology 12(5):339–344

    Article  CAS  PubMed  Google Scholar 

  76. Shin MK, Jung WR, Kim HG, Roh SE, Kwak CH, Kim CH, Kim SJ, Kim KL (2014) The ganglioside GQ1b regulates BDNF expression via the NMDA receptor signaling pathway. Neuropharmacology 77:414–421

    Article  CAS  PubMed  Google Scholar 

  77. Jung WR, Kim HG, Kim KL (2008) Ganglioside GQ1b improves spatial learning and memory of rats as measured by the Y-maze and the Morris water maze tests. Neurosci Lett 439(2):220–225

    Article  CAS  PubMed  Google Scholar 

  78. Shin MK, Choi MS, Chae HJ, Kim JW, Kim HG, Kim KL (2019) Ganglioside GQ1b ameliorates cognitive impairments in an Alzheimer's disease mouse model, and causes reduction of amyloid precursor protein. Sci Rep 9(1):8512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Barrier L et al (2007) Genotype-related changes of ganglioside composition in brain regions of transgenic mouse models of Alzheimer’s disease. Neurobiol Aging 28:1863–1872

    Article  CAS  PubMed  Google Scholar 

  80. Gottfries C-G, Karlsson I, Svennerholm L (1996) Membrane components separate early-onset Alzheimer’s disease from senile dementia of the Alzheimer type. Int Psychogeriatr 8:365–372

    Article  CAS  PubMed  Google Scholar 

  81. Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C (1992) Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int 20:433–438

    Article  CAS  PubMed  Google Scholar 

  82. Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    Article  CAS  PubMed  Google Scholar 

  83. Yanagisawa K (2005) GM1 ganglioside and the seeding of amyloid in Alzheimer’s disease: endogenous Seed for Alzheimer amyloid. Neuroscientist 11:250–260

    Article  CAS  PubMed  Google Scholar 

  84. Okada T, Wakabayashi M, Ikeda K, Matsuzaki K (2007) Formation of toxic fibrils of Alzheimer’s amyloid β-protein-(1–40) by monosialoganglioside GM1, a neuronal membrane component. J Mol Biol 371:481–489

    Article  CAS  PubMed  Google Scholar 

  85. Ariga T, Wakade C, Yu RK (2011) The pathological roles of Ganglioside metabolism in Alzheimer's disease: effects of gangliosides on neurogenesis. Int J Alzheimers Dis:14

    Google Scholar 

  86. Oikawa N et al (2009) Gangliosides determine the amyloid pathology of Alzheimer’s disease. Neuroreport 20:1043–1046

    CAS  PubMed  Google Scholar 

  87. Nishinaka T, Iwata D, Shimada S, Kosaka K, Suzuki Y (1993) Anti-ganglioside GD1a monoclonal antibody recognizes senile plaques in the brains of patients with Alzheimer-type dementia. Neurosci Res 17:171–176

    Article  CAS  PubMed  Google Scholar 

  88. Schengrund C-L (1990) The role (s) of gangliosides in neural differentiation and repair: a perspective. Brain Res Bull 24:131–141

    Article  CAS  PubMed  Google Scholar 

  89. Newburn EN, Duchemin AM, Neff NH, Hadjiconstantinou M (2014) GM1 ganglioside enhances Ret signaling in striatum. J Neurochem 130(4):541–554

    Article  CAS  PubMed  Google Scholar 

  90. Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, Tutt A, Tulasne D, Le Bourhis X, Delannoy P (2010) GD(3) synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 8(11):1526–1535

    Article  CAS  PubMed  Google Scholar 

  91. Cazet A, Groux-Degroote S, Teylaert B, Kwon KM, Lehoux S, Slomianny C, Kim CH, Le Bourhis X, Delannoy P (2009) GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem 390(7):601–609

    Article  CAS  PubMed  Google Scholar 

  92. Cazet A, Bobowski M, Rombouts Y, Lefebvre J, Steenackers A, Popa I, Guérardel Y, Le Bourhis X, Tulasne D, Delannoy P (2012) The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology 22(6):806–816

    Article  CAS  PubMed  Google Scholar 

  93. Li Y, Huang X, Zhong W, Zhang J, Ma K (2013) Ganglioside GM3 promotes HGF-stimulated motility of murine hepatoma cell through enhanced phosphorylation of cMet at specific tyrosine sites and PI3K/Akt-mediated migration signaling. Mol Cell Biochem 382(1–2):83–92

    Article  CAS  PubMed  Google Scholar 

  94. Sarkar TR, Battula VL, Werden SJ, Vijay GV, Ramirez-Peña EQ, Taube JH, Chang JT, Miura N, Porter W, Sphyris N, Andreeff M, Mani SA (2015) GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 34(23):2958–2967

    Article  CAS  PubMed  Google Scholar 

  95. Li Y, Huang X, Wang C, Li Y, Luan M, Ma K (2015) Ganglioside GM3 exerts opposite effects on motility via epidermal growth factor receptor and hepatocyte growth factor receptor-mediated migration signaling. Mol Med Rep 11(4):2959–2966

    Article  CAS  PubMed  Google Scholar 

  96. Hyuga S, Kawasaki N, Hyuga M, Ohta M, Shibayama R, Kawanishi T, Yamagata S, Yamagata T, Hayakawa T (2001) Ganglioside GD1a inhibits HGF-induced motility and scattering of cancer cells through suppression of tyrosine phosphorylation of c-Met. Int J Cancer 94(3):328–334

    Article  CAS  PubMed  Google Scholar 

  97. Hynds DL, Summers M, Van Brocklyn J, O'Dorisio MS, Yates AJ (1995) Gangliosides inhibit platelet-derived growth factor-stimulated growth, receptor phosphorylation, and dimerization in neuroblastoma SH-SY5Y cells. J Neurochem 65(5):2251–2258

    Article  CAS  PubMed  Google Scholar 

  98. Ohkawa Y, Momota H, Kato A, Hashimoto N, Tsuda Y, Kotani N, Honke K, Suzumura A, Furukawa K, Ohmi Y, Natsume A, Wakabayashi T, Furukawa K (2015) Ganglioside GD3 enhances invasiveness of Gliomas by forming a complex with platelet-derived growth factor receptor α and yes kinase. J Biol Chem 290(26):16043–16058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147

    Article  CAS  PubMed  Google Scholar 

  100. MacDonald TJ, Brown KM, LaFleur B, Peterson K, Lawlor C, Chen Y, Packer RJ, Cogen P, Stephan DA (2001) Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29:143–152

    Article  CAS  PubMed  Google Scholar 

  101. Sachinidis A, Kraus R, Seul C, Meyer zu Brickwedde MK, Schulte K, Ko Y, Hoppe J, Vetter H (1996) Gangliosides GM1, GM2 and GM3 inhibit the platelet-derived growth factor-induced signalling transduction pathway in vascular smooth muscle cells by different mechanisms. Eur J Cell Biol 71(1):79–88

    CAS  PubMed  Google Scholar 

  102. Oblinger JL, Boardman CL, Yates AJ, Burry RW (2003) Domain-dependent modulation of PDGFRbeta by ganglioside GM1. J Mol Neurosci 20(2):103–114

    Article  CAS  PubMed  Google Scholar 

  103. Farooqui T, Kelley T, Coggeshall KM, Rampersaud AA, Yates AJ (1999) GM1 inhibits early signaling events mediated by PDGF receptor in cultured human glioma cells. Anticancer Res 19:5007–5013

    CAS  PubMed  Google Scholar 

  104. Lang Z, Guerrera M, Li R, Ladisch S (2001) Ganglioside GD1a enhances VEGF-induced endothelial cell proliferation and migration. Biochem Biophys Res Commun 282(4):1031–1037

    Article  CAS  PubMed  Google Scholar 

  105. Chung TW, Kim SJ, Choi HJ, Kim KJ, Kim MJ, Kim SH, Lee HJ, Ko JH, Lee YC, Suzuki A, Kim CH (2009) Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology 19(3):229–239

    Article  CAS  PubMed  Google Scholar 

  106. Chung TW, Kim EY, Kim SJ, Choi HJ, Jang SB, Kim KJ, Ha SH, Abekura F, Kwak CH, Kim CH, Ha KT (2017) Sialyllactose suppresses angiogenesis by inhibiting VEGFR-2 activation, and tumor progression. Oncotarget 8(35):58152–58162

    Article  PubMed  PubMed Central  Google Scholar 

  107. Coskun Ü, Grzybek M, Drechsel D, Simons K (2011) Regulation of human EGF receptor by lipids. Proc Natl Acad Sci U S A 108(22):9044–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mukherjee P, Faber AC, Shelton LM, Baek RC, Chiles TC, Seyfried TN (2008) Thematic Review Series: Sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J Lipid Res 49(5):929–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jin J, Sison K, Li C, Tian R, Wnuk M, Sung HK, Jeansson M, Zhang C, Tucholska M, Jones N, Kerjaschki D, Shibuya M, Fantus IG, Nagy A, Gerber HP, Ferrara N, Pawson T, Quaggin SE (2012) Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 151(2):384–399

    Article  CAS  PubMed  Google Scholar 

  110. Seyfried TN, Mukherjee P (2010) Ganglioside GM3 is Antiangiogenic in malignant brain cancer. J Oncol 2010:961243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Alessandri G, Cornaglia-Ferraris P, Gullino PM (1997) Angiogenic and angiostatic microenvironment in tumors: role of gangliosides. Acta Oncol 36(4):383–387

    Article  CAS  PubMed  Google Scholar 

  112. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  CAS  PubMed  Google Scholar 

  113. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu Y, McCarthy J, Ladisch S (2006) Membrane ganglioside enrichment lowers the threshold for vascular endothelial cell angiogenic signaling. Cancer Res 66:10408–10414

    Article  CAS  PubMed  Google Scholar 

  115. Liu Y, Wondimu A, Yan S, Bobb D, Ladisch S (2014) Tumor gangliosides accelerate murine tumor angiogenesis. Angiogenesis 17:563–571

    Article  PubMed  CAS  Google Scholar 

  116. Ecsedy JA, Yohe HC, Bergeron AJ, Seyfried TN (1998) Tumor-infiltrating macrophages influence the glycosphingolipid composition of murine brain tumors. J Lipid Res 39:2218–2227

    Article  CAS  PubMed  Google Scholar 

  117. Kim SJ, Chung TW, Choi HJ, Jin UH, Ha KT, Lee YC, Kim CH (2014) Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation. Int J Biochem Cell Biol 46:32–38

    Article  CAS  PubMed  Google Scholar 

  118. Liu Y, Yan S, Wondimu A, Bob D, Weiss M, Sliwinski K, Villar J, Notario V, Sutherland M, Colberg-Poley AM, Ladisch S (2010) Ganglioside synthase knockout in oncogene-transformed fibroblasts depletes gangliosides and impairs tumor growth. Oncogene 29:3297–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang H, Isaji T, Satoh M, Li D, Arai Y, Gu J (2013) Antitumor effects of exogenous ganglioside gm3 on bladder cancer in an orthotopic cancer model. Urology 81:210 e211–210 e215

    Article  Google Scholar 

  120. Ponimaskin E, Dityateva G, Ruonala MO, Fukata M, Fukata Y, Kobe F, Wouters FS, Delling M, Bredt DS, Schachner M, Dityatev A (2008) Fibroblast growth factor-regulated palmitoylation of the neural cell adhesion molecule determines neuronal morphogenesis. J Neurosci 28(36):8897–8907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165

    Article  CAS  PubMed  Google Scholar 

  122. Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8(8):583–596

    Article  CAS  PubMed  Google Scholar 

  123. Hynds DL, Burry RW, Yates AJ (1997) Gangliosides inhibit growth factor-stimulated neurite outgrowth in SH-SY5Y human neuroblastoma cells. J Neurosci Res 47:617–625

    Article  CAS  PubMed  Google Scholar 

  124. Li R, Manela J, Kong Y, Ladish S (2000) Cellular gangliosides promote growth factor-induced proliferation of fibroblasts. J Biol Chem 275:34213–34223

    Article  CAS  PubMed  Google Scholar 

  125. Boldin SA, Futerman AH (2000) Up-regulation of glucosylceramide synthesis upon stimulation of axonal growth by basic fibroblast growth factor. . Evidence for post-translational modification of glucosylceramide synthase. J Biol Chem 275:9905–9909

    Article  CAS  PubMed  Google Scholar 

  126. Besancon F, Ankel H (1974) Binding of interferon to gangliosides. Nature (London) 252:478–480

    Article  CAS  Google Scholar 

  127. Rusnati M, Urbinati C, Tanghetti E, Dell’Era P, Lortat-Jacob H, Presta M (2002) Cell membrane GM1 ganglioside is a functional coreceptor for fibroblast growth factor 2. Proc Natl Acad Sci U S A 99:4367–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rusnati M, Tanghetti E, Urbinati C, Tulipano G, Marchesini S, Ziche M, Presta M (1999) Interaction of fibroblast growth factor-2 (FGF-2) with free gangliosides: biochemical characterization and biological consequences in endothelial cell cultures. Mol Biol Cell 10:313–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang Q, Song YH, Tang Z, Wang ZP, Xu Q, Bao N (2016) Effects of ganglioside GM1 and neural growth factor on neural stem cell proliferation and differentiation. Genet Mol Res 15(3)

    Google Scholar 

  130. Zhang H, Wang JZ, Sun HY, Zhang JN, Yang SY (2004) The effects of GM1 and bFGF synergistically inducing adult rat bone marrow stromal cells to form neural progenitor cells and their differentiation. Chin J Traumatol 7(1):3–6

    CAS  PubMed  Google Scholar 

  131. Slevin M, Kumar S, He X, Gaffney J (1999) Physiological concentrations of gangliosides GM1, GM2 and GM3 differentially modify basic-fibroblast-growth-factor-induced mitogenesis and the associated signalling pathway in endothelial cells. Int J Cancer 82(3):412–423

    Article  CAS  PubMed  Google Scholar 

  132. Tzeng SF, Deibler GE, DeVries GH (1999) Myelin basic protein and myelin basic protein peptides induce the proliferation of Schwann cells via ganglioside GM1 and the FGF receptor. Neurochem Res 24(2):255–260

    Article  CAS  PubMed  Google Scholar 

  133. Meuillet E, Crémel G, Hicks D, Dreyfus H (1996) Ganglioside effects on basic fibroblast and epidermal growth factor receptors in retinal glial cells. J Lipid Mediat Cell Signal 14(1–3):277–288

    Article  CAS  PubMed  Google Scholar 

  134. Thiery JP (2003) Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746

    Article  CAS  PubMed  Google Scholar 

  135. Kim SJ, Chung TW, Choi HJ, Kwak CH, Song KH, Suh SJ, Kwon KM, Chang YC, Park YG, Chang HW, Kim KS, Kim CH, Lee YC (2013) Ganglioside GM3 participates in the TGF-β1-induced epithelial-mesenchymal transition of human lens epithelial cells. Biochem J 449(1):241–251

    Article  CAS  PubMed  Google Scholar 

  136. Kwak DH, Lee S, Kim SJ, Ahn SH, Song JH, Choo YK, Choi BK, Jung KY (2005) Ganglioside GM3 inhibits the high glucose- and TGF-beta1-induced proliferation of rat glomerular mesangial cells. Life Sci 77(20):2540–2551

    Article  CAS  PubMed  Google Scholar 

  137. Guan F, Handa K, Hakomori SI (2009) Specific glycosphingolipids mediate epithelial-to-mesenchymal transition of human and mouse epithelial cell lines. Proc Natl Acad Sci U S A 106:7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Guan F, Schaffer L, Handa K, Hakomori SI (2010) Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-(beta). FASEB J 24:4889–4903

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Miyazaki H, Fukumoto S, Okada M, Hasegawa T, Furukawa K, Furukawa K (1997) Expression cloning of rat cDNA encoding UDP-galactose:GD2 β1,3-galactosyltransferase that determines the expression of GD1b/GM1/GA1. J Biol Chem 272:24794–24799

    Article  CAS  PubMed  Google Scholar 

  140. Giraudo CG, Daniotti JL, Maccioni HJ (2001) Physical and functional association of glycolipid N-acetyl-galactosaminyl and galactosyl transferases in the Golgi apparatus. Proc Natl Acad Sci U S A 98:1625–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Inman GJ, Nicolas FJ, Hill CS (2002) Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10:283–294

    Article  CAS  PubMed  Google Scholar 

  142. Peinado H, Portillo F, Cano A (2004) Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 48:365–375

    Article  CAS  PubMed  Google Scholar 

  143. Guo J, Song B, Li X, Hε C, Yang G, Yang X, Guan F (2015) Downregulation of gangliotetraosylceramide and β1,3-galactosyltransferase-4 gene expression by Smads during transforming growth factor β-induced epithelial-mesenchymal transition. Mol Med Rep 11(3):2241–2247

    Article  CAS  PubMed  Google Scholar 

  144. Ogiso M, Shogomori H, Hoshi M (1998) Localization of LewisX, sialyl-LewisX and α-galactosyl epitopes on glycosphingolipids in lens tissues. Glycobiology 8:95–105

    Article  CAS  PubMed  Google Scholar 

  145. Ariga T, Tao RV, Lee BC, Yamawaki M, Yoshino H, Scarsdale NJ, Kasama T, Kushi Y, Yu RK (1994) Glycolipid composition of human cataractous lenses. Characterization of Lewisx glycolipids. J Biol Chem 269:2667–2675

    Article  CAS  PubMed  Google Scholar 

  146. TuA W, Luo K (2007) Acetylation of Smad2 by the co-activator p300 regulates activin and transforming growth factor β response. J Biol Chem 282:21187–21196

    Article  CAS  Google Scholar 

  147. Datta PK, Blake MC, Moses HL (2000) Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-β-induced physical and functional interactions between smads and Sp1. J Biol Chem 275:40014–40019

    Article  CAS  PubMed  Google Scholar 

  148. Perdue N, Yan Q (2006) Caveolin-1 is up-regulated in transdifferentiated lens epithelial cells but minimal in normal human and murine lenses. Exp Eye Res 83:1154–1161

    Article  CAS  PubMed  Google Scholar 

  149. ThieryJ P, SleemanJ P (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  CAS  Google Scholar 

  150. Zuo W, ChenYG (2009) Specific activation of mitogen-activated protein kinase by transforming growth factor-β receptors in lipid rafts is required for epithelial cell plasticity. Mol Biol Cell 20:1020–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yao K, Tan J, Ye P, Wang K, Xu W, Shen TX, Tang X (2007) Integrin β1-mediated signaling is involved in transforming growth factor-β2-promoted migration in human lens epithelial cells. Mol Vis 13:1769–1776

    CAS  PubMed  Google Scholar 

  152. Roberts AB, Tian F, Byfield SD, Stuelten C, Ooshima A, Saika S, Flanders KC (2006) Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev 17:19–27

    Article  CAS  PubMed  Google Scholar 

  153. Schmierer B, HillC S (2007) TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982

    Article  CAS  PubMed  Google Scholar 

  154. Tagami S, Inokuchi JI, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y et al (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277:3085–3092

    Article  CAS  PubMed  Google Scholar 

  155. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci U S A 104:13678–13683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang XQ, Yan Q, Sun P, Liu JW, Go L, McDaniel SM, Paller AS (2007) Suppression of epidermal growth factor receptor signaling by protein kinase C-α activation requires CD82, caveolin-1, and ganglioside. Cancer Res 67:9986–9995

    Article  CAS  PubMed  Google Scholar 

  157. Langeveld M, Aerts JM (2009) Glycosphingolipids and insulin resistance. Prog Lipid Res 48(3–4):196–205

    Article  CAS  PubMed  Google Scholar 

  158. Sasaki A, Hata K, Suzuki S, Sawada M, Wada T, Yamaguchi K, Obinata M, Tateno H, Suzuki H, Miyagi T (2003) Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice. J Biol Chem 278(30):27896–27902

    Article  CAS  PubMed  Google Scholar 

  159. Lipina C, Hundal HS (2015) Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: evidence and mechanisms. FEBS Lett 589(21):3221–3227

    Article  CAS  PubMed  Google Scholar 

  160. Bremer EG, Hakomori S (1984) Gangliosides as receptor modulators. Adv Exp Med Biol 174:381–394

    Article  CAS  PubMed  Google Scholar 

  161. Sasaki N, Itakura Y, Toyoda M (2017) Ganglioside GM1 contributes to extracellular/intracellular regulation of insulin resistance, impairment of insulin signaling and down-stream eNOS activation, in human aortic endothelial cells after short- or long-term exposure to TNFα. Oncotarget 9(5):5562–5577

    Article  PubMed  PubMed Central  Google Scholar 

  162. Vainio S, Heino S, Mansson JE, Fredman P, Kuismanen E, Vaarala O, Ikonen E (2002) Dynamic association of human insulin receptor with lipid rafts in cells lacking caveolae. EMBO Rep 3:95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Julien S, Bobowski M, Steenackers A, Le Bourhis X, Delannoy P (2003) Do gangliosides regulate RTKs signaling? Cell 2(4):751–767

    Article  CAS  Google Scholar 

  164. Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T, Furukawa K (2004) Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 279:33368–33378

    Article  CAS  PubMed  Google Scholar 

  165. Malorni W, Giammarioli A, Garofalo T, Sorice M (2007) Dynamics of lipid raft components during lymphocyte apoptosis: the paradigmatic role of GD3. Apoptosis 12:941–949

    Article  CAS  PubMed  Google Scholar 

  166. Garofalo T, Misasi R, Mattei V, Giammarioli AM, Malorni W, Pontieri GM, Pavan A, Sorice M (2003) Association of the death-inducing signaling complex with microdomains after triggering through CD95/Fas. Evidence for caspase-8-ganglioside interaction in T cells. J Biol Chem 278:8309–8315

    Article  CAS  PubMed  Google Scholar 

  167. Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C (2003) Recruitment of TNF receptor 1 to lipid rafts is essential for TNF alpha-mediated NF-kappaB activation. Immunity 18:655–664

    Article  CAS  PubMed  Google Scholar 

  168. Zhou J, Cox NR, Ewald SJ, Morrison NE, Baker HJ (1998) Evaluation of GM1 ganglioside-mediated apoptosis in feline thymocytes. Vet Immunol Immunopathol 66:25–42

    Article  CAS  PubMed  Google Scholar 

  169. Watanabe R, Ohyama C, Aoki H, Takahashi T, Satoh M, Saito S, Hoshi S, Ishii A, Saito M, Arai Y (2002) Ganglioside g(m3) overexpression induces apoptosis and reduces malignant potential in murine bladder cancer. Cancer Res 62:3850–3854

    CAS  PubMed  Google Scholar 

  170. DeMaria R, Lenti L, Malisan F, d’Agostino F, Tomassini B, Zeuner A, Rippo MR, Testi R (1997) Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277:1652–1655

    Article  CAS  Google Scholar 

  171. DeMaria R, Rippo MR, Schuchman EH, Testi R (1998) Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 187:897–902

    Article  CAS  Google Scholar 

  172. Rippo MR, Malisan F, Ravagnan L, Tomassini B, Condo I, Costantini P, Susin SA, Rufini A, Todaro M, Kroemer G, Testi R (2000) GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J 14:2047–2054

    Article  CAS  PubMed  Google Scholar 

  173. Colell A, Garcia-Ruiz C, Roman J, Ballesta A, Fernandez-Checa JC (2001) Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-kappa B-dependent survival pathway. FASEB J 15:1068–1070

    CAS  PubMed  Google Scholar 

  174. Kang NY, Kang SK, Lee YC, Choi HJ, Lee YS, Cho SY, Kim YS, Ko JH, Kim CH (2006) Transcriptional regulation of the human GD3 synthase gene expression in Fas-induced Jurkat T cells: a critical role of transcription factor NF-kappaB in regulated expression. Glycobiology 16(5):375–389

    Article  CAS  PubMed  Google Scholar 

  175. Sorice M, Garofalo T, Misasi R, Manganelli V, Vona R, Malorni W (2012) Ganglioside GD3 as a raft component in cell death regulation. Anti Cancer Agents Med Chem 12(4):376–382

    Article  CAS  Google Scholar 

  176. Chakrabandhu K, Huault S, Garmy N, Fantini J, Stebe E, Mailfert S, Marguet D, Hueber AO (2008) The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand. Cell Death Differ 15(12):1824–1837

    Article  CAS  PubMed  Google Scholar 

  177. Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zörnig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450

    Article  CAS  PubMed  Google Scholar 

  178. Jacewicz M, Clausen H, Nudelman E, Donohue-Rolfe A, Keusch GT (1986) Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J Exp Med 163:1391–1404

    Article  CAS  PubMed  Google Scholar 

  179. Lingwood CA, Law H, Richardson S, Petric M, Brunton JL, De Grandis S, Karmali M. 1987. J Biol Chem 262, 8834–8839

    Google Scholar 

  180. Ideo H, Seko A, Ishizuka I, Yamashita K (2003) The N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity. Glycobiology 13(10):713–723

    Article  CAS  PubMed  Google Scholar 

  181. Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC, Blacklow SC (2007) Structural basis for autoinhibition of notch. Nat Struct Mol Biol 14:295–300

    Article  CAS  PubMed  Google Scholar 

  182. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612

    Article  CAS  PubMed  Google Scholar 

  183. Brou C (2009) Intracellular trafficking of notch receptors and ligands. Exp Cell Res 315(9):1549–1555

    Article  CAS  PubMed  Google Scholar 

  184. Hamel S, Fantini J, Schweisguth F (2010) Notch ligand activity is modulated by glycosphingolipid membrane composition in Drosophila melanogaster. J Cell Biol 188:581–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science 262(5130):114–117

    CAS  PubMed  Google Scholar 

  186. Sanchez-Niño MD, Carpio D, Sanz AB, Ruiz-Ortega M, Mezzano S, Ortiz A (2015) Lyso-Gb3 activates Notch1 in human podocytes. Hum Mol Genet 24(20):5720–5732

    Article  PubMed  CAS  Google Scholar 

  187. Merrill AH, Stokes TH, Momin A, Park H, Portz BJ, Kelly S, Wang E, Sullards MC, Wang MD (2009) Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J Lipid Res 50(Suppl):S97–S102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  190. Jacobson KA (2015) New paradigms in GPCR drug discovery. Biochem Pharmacol 98:541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Thomsen W, Frazer J, Unett D (2005) Functional assays for screening GPCR targets. Curr Opin Biotechnol 16:655–665

    CAS  PubMed  Google Scholar 

  192. Jafurulla M, Chattopadhyay A (2015) Sphingolipids in the function of G protein-coupled receptors. Eur J Pharmacol 763:241–246

    Article  CAS  PubMed  Google Scholar 

  193. Singh P, Paila YD, Chattopadhyay A (2012) Role of glycosphingolipids in the function of human serotonin1A receptors. J Neurochem 123:716–724

    Article  CAS  PubMed  Google Scholar 

  194. Fantini J, Barrantes FJ (2009) Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 1788:2345–2361

    Article  CAS  PubMed  Google Scholar 

  195. Jin UH, Ha KT, Kim KW, Chang YC, Lee YC, Ko JH, Kim CH (2008) Membrane type sialidase inhibits the megakaryocytic differentiation of human leukemia K562 cells. Biochim Biophys Acta 1780(5):757–763

    Article  CAS  PubMed  Google Scholar 

  196. Shen K-F, Crain SM (1990) Cholera toxin-B subunit blocks opioid excitatory effects on sensory neuron action potentials indicating the GM1 ganglioside may regulate Gs-linked opioid receptor functions. Brain Res 531:1–7

    Article  CAS  PubMed  Google Scholar 

  197. Wu G et al (1997) Interaction of δ-opioid receptor with GM1 ganglioside: conversion from inhibitory to excitatory mode. Mol Brain Res 44:341–346

    Article  CAS  PubMed  Google Scholar 

  198. Wu G et al (1998) The role of GM1 ganglioside in regulating excitatory opioid effects. Ann N Y Acad Sci 845:126–138

    Article  CAS  PubMed  Google Scholar 

  199. Saito M et al (1995) Modulation by GM1 ganglioside of 1-adrenergic receptor-induced cyclic AMP formation in Sf9 cells. Biochem Biophys Acta 1267:1–5

    Article  PubMed  Google Scholar 

  200. Wu G et al (1996) GM1 ganglioside modulates prostaglandin E1 stimulated adenylyl cyclase in Neuro-2A cells. Glycoconj J 13:235–239

    Article  PubMed  Google Scholar 

  201. Chattopadhyay A, Paila YD, Shrivastava S, Tiwari S, Singh P, Fantini J (2012) Sphingolipid-binding domain in the serotonin1A receptor. Adv Exp Med Biol 749:279–293

    Article  CAS  PubMed  Google Scholar 

  202. Fantini J, Yahi N (2015) Lipid regulation of receptor function. In: Fantini J, Yahi N (eds) Brain lipids in synaptic function and neurological disease. Elsevier, San Diego, pp 163–181

    Chapter  Google Scholar 

  203. Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A (2016) The ganglioside GM1 interacts with the serotonin1A receptor via the sphingolipid binding domain. Biochim Biophys Acta 1858(11):2818–2826

    Article  CAS  PubMed  Google Scholar 

  204. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell 105:891–902

    Article  CAS  PubMed  Google Scholar 

  205. Lundius EG, Vukojevic V, Hertz E, Stroth N, Cederlund A, Hiraiwa M, Terenius L, Svenningsson P (2014) GPR37 protein trafficking to the plasma membrane regulated by prosaposin and GM1 gangliosides promotes cell viability. J Biol Chem 289(8):4660–4673

    Article  CAS  PubMed  Google Scholar 

  206. Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7a receptors in HeLa cells. Acta Physiol 190:47–53

    Article  Google Scholar 

  207. Prasanna X, Jafurulla M, Sengupta D, Chattopadhyay A (2016) The ganglioside GM1 interacts with the serotonin 1A receptor via the sphingolipid binding domain. Biochim Biophys Acta 1858(11):2818–2826

    Article  CAS  PubMed  Google Scholar 

  208. Ha SH, Kang SK, Choi H, Kwak CH, Abekura F, Park JY, Kwon KM, Chang HW, Lee YC, Ha KT, Hou BK, Chung TW, Kim CH (2017) Induction of GD3/α1-adrenergic receptor/transglutaminase 2-mediated erythroid differentiation in chronic myelogenous leukemic K562 cells. Oncotarget 8(42):72205–72219

    Article  PubMed  PubMed Central  Google Scholar 

  209. Zhang J, Lesort M, Guttmann RP, Johnson GV (1998) Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273:2288–2295

    Article  CAS  PubMed  Google Scholar 

  210. Kang SK, Lee JY, Chung TW, Kim CH (2004) Overexpression of transglutaminase 2 accelerates the erythroid differentiation of human chronic myelogenous leukemia K562 cell line through PI3K/Akt signaling pathway. FEBS Lett 577:361–366

    Article  CAS  PubMed  Google Scholar 

  211. Kang NY, Kim CH, Kim KS, Ko JH, Lee JH, Jeong YK, Lee YC (2007) Expression of the human CMP-NeuAc: GM3 alpha2,8-sialyltransferase (GD3 synthase) gene through the NF-kappaB activation in human melanoma SK-MEL-2 cells. Biochim Biophys Acta 1769:622–630

    Article  CAS  PubMed  Google Scholar 

  212. Ha KT, Lee YC, Kim CH (2004) Overexpression of GD3 synthase induces apoptosis of vascular endothelial ECV304 cells through downregulation of Bcl-2. FEBS Lett 568:183–187

    Article  CAS  PubMed  Google Scholar 

  213. Steinert S, Lee E, Tresset G, Zhang D, Hortsch R, Wetzel R, Hebbar S, Sundram JR, Kesavapany S, Boschke E, Kraut R (2008) A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways. PLoS One 3:e2933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Fantini J, Yahi N, Garmy N (2013) Cholesterol accelerates the binding of Alzheimer’s β-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 2013:4

    Google Scholar 

  215. Wang Y, Kraut R, Mu Y (2015) Aβ1-25-derived Sphingolipid-domain tracer peptide SBD interacts with membrane Ganglioside clusters via a coil-helix-coil motif. Int J Mol Sci 16(11):26318–26332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE (2014) A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt and pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 23:418–433

    Article  CAS  PubMed  Google Scholar 

  217. Hanley JG (2014) Subunit-specific trafficking mechanisms regulating the synaptic expression of Ca-permeable AMPA receptors. Semin Cell Dev Biol 27:14–22

    Article  CAS  PubMed  Google Scholar 

  218. Zhang J, Wang Y, Chi Z, Keuss MJ, Pai YM, Kang HC, Shin JH, Bugayenko A, Wang H, Xiong Y, Pletnikov MV, Mattson MP, Dawson TM, Dawson VL (2011) The AAA+ ATPase Thorase regulates AMPA receptor-dependent synaptic plasticity and behavior. Cell 145:284–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Prendergast J, Umanah GK, Yoo SW, Lagerlof O, Motari MG, Cole RN, Huganir RL, Dawson TM, Dawson VL, Schnaar RL (2014) Ganglioside regulation of AMPA receptor trafficking. J Neurosci 34(39):13246–13258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Cole AA, Dosemeci A, Reese TS (2010) Co-segregation of AMPA receptors with GM1 ganglioside in synaptosomal membrane subfractions. Biochem J 427:535–540

    Article  CAS  PubMed  Google Scholar 

  221. Rogawski MA (2913) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl 197:9–18

    Google Scholar 

  222. Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol 22:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, CH. (2020). The GSL-Dependent Signaling. In: Glycosphingolipids Signaling. Springer, Singapore. https://doi.org/10.1007/978-981-15-5807-8_3

Download citation

Publish with us

Policies and ethics