Skip to main content

Recent Advances in the Emergence of Nanorobotics in Medicine

  • Chapter
  • First Online:
Application of Nanotechnology in Biomedical Sciences

Abstract

The manipulation of matter at atomic, molecular and/or supramolecular level has emerged as a revolutionary strategy known as nanotechnology. It brings together many fields of science, such as physics, chemistry, biology, material science, and engineering, allowing us to create nano-sized devices that work with ultra-high precision and had the best efficiency. Basically, in these devices, the nanomaterials possess new radical properties that ordinary structures do not exhibit. Therefore, the nanodevices offer significant advantages in their usage over the conventional materials. In the field of biomedical applications of these devices, they have demonstrated a promising result regarding the treatment of diseases and device-based drug delivery systems. Furthermore, these nanodevices have been approved for clinical use. This chapter discusses the emergence of nanorobotics in the field of medicine as a new cutting-edge tool for the treatment of diseases, challenges in their manufacturing, types of nanorobots, and diversity in their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams D, Suhr OB, Dyck PJ, Litchy WJ, Leahy RG, Chen J, Gollob J, Coelho T (2017) Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR Amyloidosis with polyneuropathy. BMC Neurol 17:181

    Google Scholar 

  • Akdemir H, Selçuklu A, Paşaoğlu A, Öktem IS, Kavuncu I (1995) Treatment of severe intraventricular hemorrhage by intraventricular infusion of Urokinase. Neurosurg Rev 18:95

    Google Scholar 

  • Astumian RD, Derényi I (2001) Towards a chemically driven molecular electron pump. Phys Rev Lett 86:3859

    Google Scholar 

  • Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88:20150207

    Google Scholar 

  • Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 238:176

    Google Scholar 

  • Barenholz YC (2012) Doxil®--the First FDA-approved nano-drug: lessons learned. J Control Release 160:117

    Google Scholar 

  • Barenholz Y (2016) Liposome technology. CRC Press, Boca Raton, FL, p 25

    Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380

    Google Scholar 

  • Bhansali S, Vasudev A (2012) MEMS for biomedical applications. Elsevier, Amsterdam

    Google Scholar 

  • Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnol 33:941

    Google Scholar 

  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373

    Google Scholar 

  • Bradley CA (2018) Drug delivery: DNA nanorobots - seek and destroy. Nat Rev Drug Discov 17:242

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24

    Google Scholar 

  • Cavalcanti A, Shirinzadeh B, Murphy D, Smith JA (2007) Proc. of 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007), Melbourne, p 738

    Google Scholar 

  • Cheng J, Davison I, DeMont M (1996) Dynamics and energetics of scallop locomotion. J Exp Biol 199:1931

    Google Scholar 

  • Cho K, Wang X, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310

    Google Scholar 

  • Chung C-K, Fung P, Hong Y, Ju M-S, Lin C-CK, Wu T (2006) A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens Actuator B-Chem 117:367

    Google Scholar 

  • Crut A, Geron-Landre B, Bonnet I, Bonneau S, Desbiolles P, Escude C (2005) Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Res 33:e98

    Google Scholar 

  • Davis C, Tilley F, Hague P (2010) Physics Spec Top 9:1–2

    Google Scholar 

  • des Rieux A, Pourcelle V, Cani PD, Marchand-Brynaert J, Préat V (2013) Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Deliv Rev 65:833

    Google Scholar 

  • Ding T, Valev VK, Salmon AR, Forman CJ, Smoukov SK, Scherman OA, Frenkel D, Baumberg JJ (2016) Light-induced actuating nanotransducers. Proc Natl Acad Sci U S As 113:5503

    Google Scholar 

  • Drexler KE (1981) Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc Natl Acad Sci U S As 78:5275

    Google Scholar 

  • Durazo SA, Kompella UB (2012) Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion 12:190

    Google Scholar 

  • Fathi Karkan S, Mohammadhosseini M, Panahi Y, Milani M, Zarghami N, Akbarzadeh A, Abasi E, Hosseini A, Davaran S (2017) Magnetic nanoparticles in cancer diagnosis and treatment: a review. Artif Cells Nanomed Biotechnol 45:1

    Google Scholar 

  • Feynman RP (2012) Handbook of nanoscience, engineering, and technology, 3rd edn. CRC Press, Boca Raton, p 26

    Google Scholar 

  • Garber K (2015) Alnylam’s RNAi therapy targets Amyloid disease. Nature Biotechnol 33:577

    Google Scholar 

  • Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243

    Google Scholar 

  • Gu W, Pellegrino T, Parak WJ, Boudreau R, Le Gros MA, Gerion D, Alivisatos AP, Larabell CA (2005) Quantum-dot-based cell motility assay. Sci Signal 2005:pl5

    Google Scholar 

  • Hans M, Lowman A (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid St M 6:319

    Google Scholar 

  • He C, Yin L, Tang C, Yin C (2013) Trimethyl chitosan-cysteine nanoparticles for systemic delivery of TNF-α siRNA via oral and intraperitoneal routes. Pharm Res 30:2596

    Google Scholar 

  • Hede S, Huilgol N (2006) Nano: the new nemesis of cancer. J Cancer Res Ther 2:186

    Google Scholar 

  • Hoffmann PM (2016) How molecular motors extract order from chaos (a key issues review). Rep Prog Physcs 79:032601

    Google Scholar 

  • Hong Y, Blackman NM, Kopp ND, Sen A, Velegol D (2007) Chemotaxis of nonbiological colloidal rods. Phys Rev Lett 99:178103

    Google Scholar 

  • Ismagilov RF, Schwartz A, Bowden N, Whitesides GM (2002) Autonomous movement and self‐assembly. Angew Chem Int Ed 41:652

    Google Scholar 

  • Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653

    Google Scholar 

  • Jang B, Gutman E, Stucki N, Seitz BF, Wendel-García PD, Newton T, Pokki J, Ergeneman O, Pané S, Or Y (2015) Undulatory locomotion of magnetic multilink nanoswimmers. Nano Lett 15:4829

    Google Scholar 

  • Jang B, Wang W, Wiget S, Petruska AJ, Chen X, Hu C, Hong A, Folio D, Ferreira A, Pané S (2016) Catalytic locomotion of core–shell nanowire motors. ACS Nano 10:9983

    Google Scholar 

  • Jo I, Huang Y, Zimmermann W, Kanso E (2016) Passive swimming in viscous oscillatory flows. Phys Rev E 94:063116

    Google Scholar 

  • Karve S, Werner ME, Sukumar R, Cummings ND, Copp JA, Wang EC, Li C, Sethi M, Chen RC, Pacold ME (2012) Revival of the abandoned therapeutic wortmannin by nanoparticle drug delivery. Proc Natl Acad Sci U S As 109:8230

    Google Scholar 

  • Kay ER, Leigh DA (2015) Rise of the molecular machines. Angew Chem Int Ed 54:10080

    Google Scholar 

  • Kelly TR, De Silva H, Silva RA (1999) Unidirectional rotary motion in a molecular system. Nature 401:150

    Google Scholar 

  • Kelly TR, Silva RA, De Silva H, Jasmin S, Zhao Y (2000) A rationally designed prototype of a molecular motor. J Am Chem Soc 122:6935

    Google Scholar 

  • Kipp J (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109

    Google Scholar 

  • Kou L, Hou Y, Yao Q, Guo W, Wang G, Wang M, Fu Q, He Z, Ganapathy V, Sun J (2017) L-Carnitine-conjugated nanoparticles to promote permeation across blood-brain barrier and to target glioma cells for drug delivery via the novel organic cation/carnitine transporter OCTN2. Artif Cells Nanomed Biotechnol, 1

    Google Scholar 

  • Koumura N, Zijlstra RW, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152

    Google Scholar 

  • Kühne D, Klappenberger F, Krenner W, Klyatskaya S, Ruben M, Barth JV (2010) Rotational and constitutional dynamics of caged supramolecules. Proc Natl Acad Sci U S As 107:21332

    Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1

    Google Scholar 

  • Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Physcs 72:096601

    Google Scholar 

  • Lee KR, Betz AL, Keep RF, Chenevert TL, Kim S, Hoff JT (1995) Intracerebral infusion of thrombin as a cause of brain edema. J Neurosurg 83:1045

    Google Scholar 

  • Li T, Li J, Morozov KI, Wu Z, Xu T, Rozen I, Leshansky AM, Li L, Wang J (2017) Highly efficient freestyle magnetic nanoswimmer. Nano Lett 17:5092

    Google Scholar 

  • Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han J-Y (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature Biotechnol 36:258

    Google Scholar 

  • Lin Y-C, Jen C-P, Wu W-D, Yang C-C, Ho H-C, Wu C-Y, Li M, Huang M-Y (2000) Microfabricated systems and MEMS VI: proceedings of the international symposium, Princeton, NJ, p 197

    Google Scholar 

  • Lipinski CA (2001) Avoiding investment in doomed drugs, Curr Drug Discov 1:17

    Google Scholar 

  • Liu D-S, Astumian RD, Tsong T (1990) Activation of Na+ and K+ pumping modes of (Na, K)-ATPase by an oscillating electric field. J Biol Chem 265:7260

    Google Scholar 

  • Liu M, Zhang J, Zhu X, Shan W, Li L, Zhong J, Zhang Z, Huang Y (2016) Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J Control Release 222:67

    Google Scholar 

  • Ma P, Dong X, Swadley CL, Gupte A, Leggas M, Ledebur HC, Mumper RJ (2009) Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. Biomed Nanotechnol 5:151

    Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317

    Google Scholar 

  • Mallouk TE, Sen A (2009) Powering nanorobots. Sci Am 300:72

    Google Scholar 

  • Mandal D, Jarzynski C (2012) Work and information processing in a solvable model of Maxwell’s demon. Proc Natl Acad Sci U S As 109:11641

    Google Scholar 

  • Marasini N, Skwarczynski M, Toth I (2014) Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines 13:1361

    Google Scholar 

  • Marchal S, El Hor A, Millard M, Gillon V, Bezdetnaya L (2015) Anticancer drug delivery: an update on clinically applied nanotherapeutics. Drugs 75:1601

    Google Scholar 

  • Masood F (2016) Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng C 60:569

    Google Scholar 

  • Miao P, Mitcheson P, Holmes A, Yeatman E, Green T, Stark B (2006) MEMS inertial power generators for biomedical applications. Microsyst Technol 12:1079

    Google Scholar 

  • Miki K, Clapham DE (2013) Rheotaxis guides mammalian sperm. Curr Biol 23:443

    Google Scholar 

  • Modi S, Swetha M, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotech 4:325

    Google Scholar 

  • Modi S, Nizak C, Surana S, Halder S, Krishnan Y (2013) Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat Nanotech 8:459

    Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463

    Google Scholar 

  • Musser G (1999) Taming Maxwell’s demon. Sci Am 280:24

    Google Scholar 

  • Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuator B-Chem 130:917

    Google Scholar 

  • Otto AM, Brischwein M, Niendorf A, Henning T, Motrescu E, Wolf B (2003) Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detect Prev 27:291

    Google Scholar 

  • Ow H, Larson DR, Srivastava M, Baird BA, Webb WW, Wiesner U (2005) Bright and stable core− shell fluorescent silica nanoparticles. Nano Lett 5:113

    Google Scholar 

  • Paxton WF, Kistler KC, Olmeda CC, Sen A, Angelo SKS, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126:13424

    Google Scholar 

  • Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615

    Google Scholar 

  • Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313

    Google Scholar 

  • Purcell EM (1977) Life at low Reynolds number. Am J Phys 45:3

    Google Scholar 

  • Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R, Mierka O, Turek S, Leshansky AM, Fischer P (2014) Swimming by reciprocal motion at low Reynolds number. Nat Commun 5:6119

    Google Scholar 

  • Rashid M, Wani TU, Mishra N, Sofi HS, Ashraf R, Sheikh FA (2018) Development and characterization of drug-loaded self-solid nano-emulsified drug delivery system for treatment of diabetes. Mat Sci Res India 15:01

    Google Scholar 

  • Ren L, Zhou D, Mao Z, Xu P, Huang TJ, Mallouk TE (2017) Rheotaxis of bimetallic micromotors driven by chemical–acoustic hybrid power. ACS Nano 11:10591

    Google Scholar 

  • Requicha AA (2003) Nanorobots, NEMS, and nanoassembly. Proc IEEE 91:1922

    Google Scholar 

  • Sahoo SK, Misra R, Parveen S (2017) Nanomedicine in cancer. Pan Stanford, Singapore, p 73

    Google Scholar 

  • Sanchez S, Solovev AA, Harazim SM, Deneke C, Feng Mei Y, Schmidt OG (2011a) The smallest man‐made jet engine. Chem Rec 11:367

    Google Scholar 

  • Sanchez S, Ananth AN, Fomin VM, Viehrig M, Schmidt OG (2011b) Superfast motion of catalytic microjet engines at physiological temperature. J Am Chem Soc 133:14860

    Google Scholar 

  • Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, Fischer P (2014) Nanopropellers and their actuation in complex viscoelastic media. ACS Nano 8:8794

    Google Scholar 

  • Sengupta S, Ibele ME, Sen A (2012) Fantastic voyage: designing self‐powered nanorobots. Angew Chem Int Ed 51:8434

    Google Scholar 

  • Shahinpoor M, Bar-Cohen Y, Simpson J, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater Struct 7:R15

    Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology 12:5

    Google Scholar 

  • Shapira A, Livney YD, Broxterman HJ, Assaraf YG (2011) Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 14:150

    Google Scholar 

  • Sharma N, Mittal R (2008) Nanorobot movement: challenges and biologically inspired solutions. Int J Smart Sensing Intell Syst, 1

    Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20

    Google Scholar 

  • Shirai Y, Osgood AJ, Zhao Y, Kelly KF, Tour JM (2005) Directional control in thermally driven single-molecule nanocars. Nano Lett 5:2330

    Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1

    Google Scholar 

  • Stathopoulos GP, Antoniou D, Dimitroulis J, Michalopoulou P, Bastas A, Marosis K, Stathopoulos J, Provata A, Yiamboudakis P, Veldekis D (2010) Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol 21:2227

    Google Scholar 

  • Teissie J, Tsong TY (1980) Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J Membrane Biol 55:133

    Google Scholar 

  • Todo T, Usui M, Takakura K (1991) Treatment of severe intraventricular hemorrhage by intraventricular infusion of urokinase. J Neurosurg 74:81

    Google Scholar 

  • Traub P, Nomura M (1979) Cold spring harbor symposia on quantitative biology. Cold Spring Harbor Lab. Press, Plainview, NY, p 63

    Google Scholar 

  • Tsong T, Astumian RD (1988) Electroconformational coupling: how membrane-bound ATPase transduces energy from dynamic electric fields. Annu Rev Physiol 50:273

    Google Scholar 

  • Ummat A, Dubey A, Mavroidis C (2005) Bionanorobotics: a field inspired by nature. Biomimetics. CRC Press, Boca Raton, p 219

    Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284

    Google Scholar 

  • Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22:10451

    Google Scholar 

  • Wang W, Castro LA, Hoyos M, Mallouk TE (2012) Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122

    Google Scholar 

  • Wang Y, Li J, Chen JJ, Gao X, Huang Z, Shen Q (2017) Multifunctional nanoparticles loading with docetaxel and GDC0941 for reversing multidrug resistance mediated by PI3K/Akt signal pathway. Molr Pharm 14:1120

    Google Scholar 

  • Wani TU, Rashid M, Kumar M, Chaudhary S, Kumar P, Mishra N (2014) Targeting aspects of nanogels: an overview. Int J Pharm Sci Nanotechnol 7:2612

    Google Scholar 

  • Wee KW, Kang GY, Park J, Kang JY, Yoon DS, Park JH, Kim TS (2005) Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens Bioelectron 20:1932

    Google Scholar 

  • Wu Z, Wu Y, He W, Lin X, Sun J, He Q (2013) Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew Chem Int Ed 52:7000

    Google Scholar 

  • Yoshizumi Y, Date Y, Ohkubo K, Yokokawa M, Suzuki H (2013) Micro electro mechanical systems (MEMS), 2013 IEEE 26th international conference. MEMS, Taipei, p 540

    Book  Google Scholar 

  • Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, Mao Y (2010) Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Control Release 144:46

    Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294

    Google Scholar 

  • Zhou D, Li YC, Xu P, Ren L, Zhang G, Mallouk TE, Li L (2017) Visible-light driven Si-Au micromotors in water and organic solvents. Nanoscale 9:11434

    Google Scholar 

Download references

Acknowledgments

The Department of Science and Technology, Government of India, Nano Mission, supported this work under Grant SR/NM/NB-1038/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem A. Sheikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, T.U., Raza, S.N., Khan, N.A., Sheikh, F.A. (2020). Recent Advances in the Emergence of Nanorobotics in Medicine. In: Sheikh, F. (eds) Application of Nanotechnology in Biomedical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-15-5622-7_7

Download citation

Publish with us

Policies and ethics