Skip to main content

Controlling Optical Properties of Multinary Quantum Dots for Developing Novel Photoelectrochemical Reactions

  • Chapter
  • First Online:
Photosynergetic Responses in Molecules and Molecular Aggregates

Abstract

We introduce solution-phase preparation of multinary QDs composed of less-toxic Ag-III-VI-based semiconductors and control of their physicochemical properties. The energy gaps (Egs) of multinary QDs could be adjusted by the chemical composition as well as by the particle size. The photochemical properties, including photoluminescence (PL), photocatalysis, and photocurrent generation, of prepared QDs, are discussed in terms of the Eg, the non-stoichiometric chemical composition, and the particle morphology. The PL peak was controlled from visible to near-IR wavelength regions by varying the chemical composition of QDs, in which the peak width of Ag-In-Ga-S QDs was remarkably narrowed by the removal of deep defect levels via tuning of non-stoichiometry and the surface condition. A nonlinear photoresponse induced by hot hole transfer was observed by visible light irradiation to near-IR-light-responsive Zn-Ag-In-Te QDs. The findings will provide new insights into design and fabrication of novel QD-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovalenko MV, Manna L, Cabot A, Hens Z, Talapin DV, Kagan CR, Klimov VI, Rogach AL, Reiss P, Milliron DJ, Guyot-Sionnnest P, Konstantatos G, Parak WJ, Hyeon T, Korgel BA, Murray CB, Heiss W (2015) Prospects of nanoscience with nanocrystals. ACS Nano 9:1012–1057. https://doi.org/10.1021/nn506223h

    Article  CAS  PubMed  Google Scholar 

  2. Pietryga JM, Park YS, Lim JH, Fidler AF, Bae WK, Brovelli S, Klimov VI (2016) Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev 116:10513–10622. https://doi.org/10.1021/acs.chemrev.6b00169

    Article  CAS  PubMed  Google Scholar 

  3. Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG (2000) Mechanisms for intraband energy relaxation in semiconductor quantum dots: the role of electron-hole interactions. Phys Rev B 61:13349–13352. https://doi.org/10.1103/PhysRevB.61.R13349

    Article  Google Scholar 

  4. Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu XY (2010) Hot-electron transfer from semiconductor nanocrystals. Science 328:1543–1547. https://doi.org/10.1126/science.1185509

    Article  CAS  PubMed  Google Scholar 

  5. Wang YF, Wang HY, Li ZS, Zhao J, Wang L, Chen QD, Wang WQ, Sun HB (2014) Electron extraction dynamics in CdSe and CdSe/CdS/ZnS quantum dots adsorbed with methyl viologen. J Phys Chem C 118:17240–17246. https://doi.org/10.1021/jp5024789

    Article  CAS  Google Scholar 

  6. Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890. https://doi.org/10.1021/cr900289f

    Article  CAS  PubMed  Google Scholar 

  7. Semonin OE, Luther JM, Choi S, Chen HY, Gao JB, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530–1533. https://doi.org/10.1126/science.1209845

    Article  CAS  PubMed  Google Scholar 

  8. Hanna MC, Beard MC, Nozik AJ (2012) Effect of solar concentration on the thermodynamic power conversion efficiency of quantum-dot solar cells exhibiting multiple exciton generation. J Phys Chem Lett 3:2857–2862. https://doi.org/10.1021/jz301077e

    Article  CAS  Google Scholar 

  9. Torimoto T, Kameyama T, Kuwabata S (2014) Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticlescomposed of AgInS2 and its solid solutions. J Phys Chem Lett 5:336–347. https://doi.org/10.1021/jz402378x

    Article  CAS  PubMed  Google Scholar 

  10. Torimoto T (2017) Nanostructure engineering of size-quantized semiconductor particles for photoelectrochemical applications. Electrochemistry 85:534–542. https://doi.org/10.5796/electrochemistry.85.534

    Article  CAS  Google Scholar 

  11. Xu GX, Zeng SW, Zhang BT, Swihart MT, Yong KT, Prasad PN (2016) New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev 116:12234–12327. https://doi.org/10.1021/acs.chemrev.6b00290

    Article  CAS  PubMed  Google Scholar 

  12. Stroyuk O, Raevskaya A, Gaponik N (2018) Solar light harvesting with multinary metal chalcogenide nanocrystals. Chem Soc Rev 47:5354–5422. https://doi.org/10.1039/c8cs00029h

    Article  CAS  PubMed  Google Scholar 

  13. Kameyama T, Takahashi T, Machida T, Kamiya Y, Yamamoto T, Kuwabata S, Torimoto T (2015) Controlling the electronic energy structure of ZnS-AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution. J Phys Chem C 119:24740–24749. https://doi.org/10.1021/acs.jpcc.5b07994

    Article  CAS  Google Scholar 

  14. Kameyama T, Kishi M, Miyamae C, Sharma DK, Hirata S, Yamamoto T, Uematsu T, Vacha M, Kuwabata S, Torimoto T (2018) Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag-In-S nanoparticles via Ga3+ doping. ACS Appl Mater Interfaces 10:42844–42855. https://doi.org/10.1021/acsami.8b15222

    Article  CAS  PubMed  Google Scholar 

  15. Zhang SB, Wei SH, Zunger A, Katayama-Yoshida H (1998) Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B 57:9642–9656. https://doi.org/10.1103/PhysRevB.57.9642

    Article  CAS  Google Scholar 

  16. Uematsu T, Wajima K, Sharma DK, Hirata S, Yamamoto T, Kameyama T, Vacha M, Torimoto T, Kuwabata S (2018) Narrow band-edge photoluminescence from AglnS2 semiconductor nanoparticles by the formation of amorphous III-VI semiconductor shells. NPG Asia Mater 10:713–726. https://doi.org/10.1038/s41427-018-0067-9

    Article  CAS  Google Scholar 

  17. Kameyama T, Sugiura K, Ishigami Y, Yamamoto T, Kuwabata S, Okuhata T, Tamai N, Torimoto T (2018) Rod-shaped Zn-Ag-In-Te nanocrystals with wavelength-tunable band-edge photoluminescence in the near-IR region. J Mater Chem C 6:2034–2042. https://doi.org/10.1039/c7tc05624a

    Article  CAS  Google Scholar 

  18. Kameyama T, Douke Y, Shibakawa H, Kawaraya M, Segawa H, Kuwabata S, Torimoto T (2014) Widely controllable electronic energy structure of ZnSe-AgInSe2 solid solution nanocrystals for quantum-dot-sensitized solar cells. J Phys Chem C 118:29517–29524. https://doi.org/10.1021/jp508769f

    Article  CAS  Google Scholar 

  19. Kameyama T, Sugiura K, Kuwabata S, Okuhata T, Tamai N, Torimoto T (2019) Enhanced photoelectrochemical properties of Zn-Ag-In-Te nanocrystals with high energy photon excitation. Chem Nano Mat 5:1028–1035. https://doi.org/10.1002/cnma.201900241

    Article  CAS  Google Scholar 

  20. Regulacio MD, Han MY (2016) Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications. Acc Chem Res 49:511–519. https://doi.org/10.1021/acs.accounts.5b00535

    Article  CAS  PubMed  Google Scholar 

  21. Coughlan C, Ibanez M, Dobrozhan O, Singh A, Cabot A, Ryan KM (2017) Compound copper chalcogenide nanocrystals. Chem Rev 117:5865–6109. https://doi.org/10.1021/acs.chemrev.6b00376

    Article  CAS  PubMed  Google Scholar 

  22. Torimoto T, Kamiya Y, Kameyama T, Nishi H, Uematsu T, Kuwabata S, Shibayama T (2016) Controlling shape anisotropy of ZnS-AgInS2 solid solution nanoparticles for improving photocatalytic activity. ACS Appl Mater Interfaces 8:27151–27161. https://doi.org/10.1021/acsami.6b10408

    Article  CAS  PubMed  Google Scholar 

  23. Kameyama T, Koyama S, Yamamoto T, Kuwabata S, Torimoto T (2018) Enhanced photocatalytic activity of Zn-Ag-In-S semiconductor nanocrystals with a dumbbell-shaped heterostructure. J Phys Chem C 122:13705–13715. https://doi.org/10.1021/acs.jpcc.8b00255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by JSPS KAKENHI Grant Numbers JP15H01082 and JP17H05254 in Scientific Research on Innovative Areas “Photosynergetics” and JP16H06507 in Scientific Research on Innovative Areas “Nano-Material Optical-Manipulation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Torimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torimoto, T., Kameyama, T. (2020). Controlling Optical Properties of Multinary Quantum Dots for Developing Novel Photoelectrochemical Reactions. In: Miyasaka, H., Matsuda, K., Abe, J., Kawai, T. (eds) Photosynergetic Responses in Molecules and Molecular Aggregates. Springer, Singapore. https://doi.org/10.1007/978-981-15-5451-3_13

Download citation

Publish with us

Policies and ethics