Skip to main content

Nanomaterials and Reactive Oxygen Species (ROS)

  • Chapter
  • First Online:
Nanotechnology in Regenerative Medicine and Drug Delivery Therapy

Abstract

One fundamental mechanism widely described for nanotoxicity from nanomaterials involves oxidative damage due to generation of free radicals and other reactive oxygen species (ROSs). Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of nanomaterials. Effective methods are needed to assess oxidative damage elicited by nanoscale materials. The production of ROSs induced by nanomaterials is a double-edged sword, bringing not only the benefits of efficient nanomaterials for therapeutic treatment of diseases, but also possible health and environmental risks associated with them. Therefore, it is important to give a brief review on ROSs of nanomaterials and their relation in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Apel, H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. B. Halliwell, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141(2), 312–322 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S.I. Liochev, Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60, 1–4 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. K. Brieger et al., Reactive oxygen species: from health to disease. Swiss Med. Wkly. 142, w13659 (2012)

    CAS  PubMed  Google Scholar 

  5. R. Mittler, ROS are good. Trends Plant Sci. 22(1), 11–19 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. J.G. Scandalios, The rise of ROS. Trends Biochem. Sci. 27(9), 483–486 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. A.D. Anbar, Elements and evolution. Science 322(5907), 1481–1483 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. N. Singh et al., A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 11(9), 3855–3863 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. L.A. Sena, N.S. Chandel, Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48(2), 158–167 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M.P. Murphy et al., Unraveling the biological roles of reactive oxygen species. Cell Metab. 13(4), 361–366 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Finkel, Signal transduction by reactive oxygen species. J. Cell Biol. 194(1), 7–15 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Schieber, S. Navdeep, Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24(10), R453–R462 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J. Zhang et al., ROS and ROS-mediated cellular signaling. Oxidative Med. Cell. Longev. 2016, 4350965 (2016)

    Google Scholar 

  14. W. Drӧge, Free radicals in the physiological control of cell function. Physiol. Rev. 82(1), 47–95 (2002)

    Article  Google Scholar 

  15. D.J. Betteridge, What is oxidative stress? Metabolism 49(2), 3–8 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. B.C. Dickinson, C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7(8), 504–511 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000)

    Article  CAS  PubMed  Google Scholar 

  18. B. Halliwell, Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med. 91(3), S14–S22 (1991)

    Article  Google Scholar 

  19. A. Baxter, R. Mittler, N. Suzuki, ROS as key players in plant stress signalling. J. Exp. Bot. 65(5), 1229–1240 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. V.J. Thannickal, B.L. Fanburg, Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279(6), L1005–L1028 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. A. Glasauer, N.S. Chandel, Ros. Curr. Biol. 23(3), R100–R102 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. J. Foreman et al., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930), 442–446 (2003)

    Article  CAS  PubMed  Google Scholar 

  23. J.D. Lambeth, NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4(3), 181–189 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. R. Mittler et al., ROS signaling: the new wave? Trends Plant Sci. 16(6), 300–309 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. B. D’Autréaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8(10), 813–824 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. E. Ginter, V. Simko, V. Panakova, Antioxidants in health and disease. Bratislava Med. J. 115(10), 603–606 (2014)

    Article  CAS  Google Scholar 

  27. E. Vranová, D. Inzé, V. Breusegem, Signal transduction during oxidative stress. J. Exp. Bot. 53(372), 1227–1236 (2002)

    Article  PubMed  Google Scholar 

  28. Y.S. Bae et al., Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32(6), 491–509 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L.A. Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4(2), 89–96 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Sies, Strategies of antioxidant defense. Eur. J. Biochem. 215(2), 213–219 (1993)

    Article  CAS  PubMed  Google Scholar 

  31. A.M. Pisoschi, A. Pop, The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97, 55–74 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. J.M. Matés, Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153(1–3), 83–104 (2000)

    Article  PubMed  Google Scholar 

  33. M. Valko et al., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. P.P. Fu et al., Mechanisms of nanotoxicity: generation of reactive oxygen species. J. Food Drug Anal. 22(1), 64–75 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. A. Nel et al., Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. F. Vilhardt et al., Microglia antioxidant systems and redox signalling. Br. J. Pharmacol. 174(12), 1719–1732 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. S.F. Thai et al., Differential genomic effects on signaling pathways by two different CeO2 nanoparticles in HepG2 cells. J. Nanosci. Nanotechnol. 15(12), 9925–9937 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. M. Jarosz et al., Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacology 25(1), 11–24 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G.S. Kumar et al., Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem. Biol. Interact. 223, 125–133 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. C.Y. Meng et al., Resveratrol alleviate the injury of mice liver induced by cadmium sulfide nanoparticles. Kaohsiung J. Med. Sci. 35(5), 297–302 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. M. Mittal et al., Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20(7), 1126–1167 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. X. Sun et al., NOX4- and Nrf2-mediated oxidative stress induced by silver nanoparticles in vascular endothelial cells. J. Appl. Toxicol. 37(12), 1428–1437 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. X. Kong et al., Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am. J. Respir. Crit. Care Med. 184(8), 928–938 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. X. Chen et al., Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-kappaB signaling pathway. Int. J. Nanomedicine 10, 1–22 (2015)

    Article  PubMed  CAS  Google Scholar 

  45. M.M. Kaminski et al., Mitochondria as oxidative signaling organelles in T-cell activation: physiological role and pathological implications. Arch. Immunol. Ther. Exp. 61(5), 367–384 (2013)

    Article  CAS  Google Scholar 

  46. N.S. Chandel et al., Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. J. Immunol. 165(2), 1013–1021 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. X. He et al., Single-walled carbon nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-kappaB signaling. J. Clin. Toxicol. S5(5), (2012). https://doi.org/10.4172/2161-0495.S5-005

  48. A. Nemmar et al., Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int. J. Nanomedicine 11, 919–928 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. T. Xia et al., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. B. Ebran et al., Radiological evidence of lung involvement in metal fume fever. Rev. Pneumol. Clin. 56(6), 361–364 (2000)

    CAS  PubMed  Google Scholar 

  51. H.A. Jeng, J. Swanson, Toxicity of metal oxide nanoparticles in mammalian cells. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 41(12), 2699–2711 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. X. Han et al., Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297(1–3), 1–9 (2012)

    Article  CAS  PubMed  Google Scholar 

  53. S. Krol, Challenges in drug delivery to the brain: nature is against us. J. Control. Release 164(2), 145–155 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. P. Ganguly, A. Breen, S.C. Pillai, Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances. ACS Biomater Sci. Eng. 4(7), 2237–2275 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. A. Mirshafa et al., Size-dependent neurotoxicity of aluminum oxide particles: a comparison between nano- and micrometer size on the basis of mitochondrial oxidative damage. Biol. Trace Elem. Res. 183(2), 261–269 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. N. Neubauer et al., Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments—an indication for the catalytic nature of their interactions. Nanotoxicology 9(8), 1059–1066 (2015)

    Article  PubMed  CAS  Google Scholar 

  57. Y.S. Kim et al., Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 7(1), 20 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. H.J. Paek et al., Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale 5(23), 11416–11427 (2013)

    Article  CAS  PubMed  Google Scholar 

  59. P.N. Navya, H.K. Daima, Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg 3(1), 1 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. A. Platel et al., Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J. Appl. Toxicol. 36(3), 434–444 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. D. Hühn et al., Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7(4), 3253–3263 (2013)

    Article  PubMed  CAS  Google Scholar 

  62. C.A. Simpson et al., In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles. Nanomedicine 9(2), 257–263 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. L. Ma-Hock et al., Short term inhalation toxicity of a liquid aerosol of CdS/Cd(OH)(2) core shell quantum dots in male Wistar rats. Toxicol. Lett. 208(2), 115–124 (2012)

    Article  CAS  PubMed  Google Scholar 

  64. H. Guo et al., Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part. Fibre Toxicol. 13(1), 21 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. T. Wen et al., Comparative study of in vitro effects of different nanoparticles at non-cytotoxic concentration on the adherens junction of human vascular endothelial cells. Int. J. Nanomedicine 14, 4475–4489 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. T. Wen et al., Iron oxide nanoparticles induce reversible endothelial-to-mesenchymal transition in vascular endothelial cells at acutely non-cytotoxic concentrations. Part. Fibre Toxicol. 16(1), 30 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. J.M. Burns et al., Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat. Sci. 74(4), 683–734 (2012)

    Article  CAS  Google Scholar 

  68. G.J. Maghzal et al., Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic. Biol. Med. 53(10), 1903–1918 (2012)

    Article  CAS  PubMed  Google Scholar 

  69. J.F. Woolley, J. Stanicka, T.G. Cotter, Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem. Sci. 38(11), 556–565 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. S.I. Dikalov, D.G. Harrison, Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal. 20(2), 372–382 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. B.J. Marquis et al., Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117(17), 11302–11336 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. M. Kohno, Applications of electron spin resonance spectrometry for reactive oxygen species and reactive nitrogen species research. J. Clin. Biochem. Nutr. 47(1), 1–11 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. C.L. Hawkins, M.J. Davies, Detection and characterisation of radicals in biological materials using EPR methodology. Biochim. Biophys. Acta Gen. Subj. 1840(2), 708–721 (2014)

    Article  CAS  Google Scholar 

  75. N. Khan, H. Swartz, Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy. Mol. Cellular Biochem. 234/235, 341–357 (2002)

    Article  CAS  Google Scholar 

  76. F.A. Villamena, J.L. Zweier, Detection of reactive oxygen and nitrogen species by EPR spin trapping. Antioxid. Redox Signal. 6(3), 619–629 (2004)

    Article  CAS  PubMed  Google Scholar 

  77. A. Steffen-Heins, B. Steffens, EPR spectroscopy and its use in planta—a promising technique to disentangle the origin of specific ROS. Front. Environ. Sci. 3(15), (2015). https://doi.org/10.3389/fenvs.2015.00015

  78. S. Suzen, H. Gurer-Orhan, L. Saso, Detection of reactive oxygen and nitrogen species by electron paramagnetic resonance (EPR) technique. Molecules 22(1) (2017)

    Google Scholar 

  79. W. He et al., Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J. Food Drug Anal. 22(1), 49–63 (2014)

    Article  CAS  PubMed  Google Scholar 

  80. L. Valgimigli, G.F. Pedulli, M. Paolini, Measurement of oxidative stress by EPR radical-probe technique. Free Radic. Biol. Med. 31(6), 708–716 (2001)

    Article  CAS  PubMed  Google Scholar 

  81. G. Bartosz, Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 368(1–2), 53–76 (2006)

    Article  CAS  PubMed  Google Scholar 

  82. X. Chen et al., Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 45(10), 2976–3016 (2016)

    Article  CAS  PubMed  Google Scholar 

  83. A. Gomes, E. Fernandes, J.L.F.C. Lima, Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. B.C. Dickinson, D. Srikun, C.J. Chang, Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14(1), 50–56 (2010)

    Article  CAS  PubMed  Google Scholar 

  85. X. Chen et al., Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 40, 4783–4804 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. W. Adam, D.V. Kazakov, V.P. Kazakov, Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev. 105(9), 3371–3387 (2005)

    Article  CAS  PubMed  Google Scholar 

  87. C. Lu, G. Song, J.-M. Lin, Reactive oxygen species and their chemiluminescence-detection methods. TrAC Trends Anal. Chem. 25(10), 985–995 (2006)

    Article  CAS  Google Scholar 

  88. S. Yamaguchi et al., Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Anal. Chim. Acta 665, 74–78 (2010)

    Article  CAS  PubMed  Google Scholar 

  89. G.M. Ganea et al., Ratiometric coumarin-neutral red (CONER) nanoprobe for detection of hydroxyl radicals. Anal. Chem. 83(7), 2576–2581 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. D.A. Heller et al., Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat. Nanotechnol. 4(2), 114–120 (2009)

    Article  CAS  PubMed  Google Scholar 

  91. F. Du et al., A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 10(5), 964–972 (2014)

    Article  CAS  PubMed  Google Scholar 

  92. F. Bray et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Article  PubMed  Google Scholar 

  93. W. Fan et al., Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 117, 13566–13638 (2017)

    Article  CAS  PubMed  Google Scholar 

  94. S. Kwon et al., Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc. Chem. Res. 52, 1771–1782 (2019)

    Article  CAS  PubMed  Google Scholar 

  95. S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 115, 1990–2042 (2015)

    Article  CAS  PubMed  Google Scholar 

  96. H. Lin, Y. Chen, J. Shi, Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47, 1938–1958 (2018)

    Article  CAS  PubMed  Google Scholar 

  97. M. Huo et al., Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. K. Fan et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9, 1440 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38(6), 1759–1782 (2009)

    Article  CAS  PubMed  Google Scholar 

  100. Z. Xie et al., Biocompatible two-dimensional titanium nanosheets for multimodal imaging-guided cancer theranostics. ACS Appl. Mater. Interfaces 11(25), 22129–22140 (2019)

    Article  CAS  PubMed  Google Scholar 

  101. J. Guo et al., Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomedicine 12, 6131–6152 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. W.-S. Kuo et al., Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew. Chem. Int. Ed. 49(15), 2711–2715 (2010)

    Article  CAS  Google Scholar 

  103. V.G. Deepagan et al., Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 16(10), 6257–6264 (2016)

    Article  CAS  PubMed  Google Scholar 

  104. L. Li et al., CuS nanoagents for photodynamic and photothermal therapies: phenomena and possible mechanisms. Photodiagn. Photodyn. Ther. 19, 5–14 (2017)

    Article  CAS  Google Scholar 

  105. T.A. Tabish, S. Zhang, P.G. Winyard, Developing the next generation of graphene-based platforms for cancer therapeutics: the potential role of reactive oxygen species. Redox Biol. 15, 34–40 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. J. Ge et al., A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5(1), 4596 (2014)

    Article  CAS  PubMed  Google Scholar 

  107. B. Tian et al., Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 5(9), 7000–7009 (2011)

    Article  CAS  PubMed  Google Scholar 

  108. J. Zeng et al., Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro. ACS Biomater. Sci. Eng. 4(3), 963–972 (2018)

    Article  CAS  PubMed  Google Scholar 

  109. C.W. Chen et al., Plasmon-enhanced photodynamic cancer therapy by upconversion nanoparticles conjugated with Au nanorods. ACS Appl. Mater. Interfaces 8(47), 32108–32119 (2016)

    Article  CAS  PubMed  Google Scholar 

  110. S.-H. Hu et al., Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Adv. Mater. 24(13), 1748–1754 (2012)

    Article  CAS  PubMed  Google Scholar 

  111. Q. Wu et al., Reduced graphene oxide conjugated with CuInS2/ZnS nanocrystals with low toxicity for enhanced photothermal and photodynamic cancer therapies. Carbon 108, 21–37 (2016)

    Article  CAS  Google Scholar 

  112. H.T. Nguyen et al., Incorporation of chemotherapeutic agent and photosensitizer in a low temperature-sensitive liposome for effective chemo-hyperthermic anticancer activity. Expert Opin. Drug Deliv. 14(2), 155–164 (2016)

    Article  PubMed  CAS  Google Scholar 

  113. H. Ranji-Burachaloo et al., Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano 12(12), 11819–11837 (2018)

    Article  CAS  PubMed  Google Scholar 

  114. L. Gao, K. Fan, X. Yan, Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7(13), 3207–3227 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. J. Fu et al., Lysosome-controlled efficient ROS overproduction against cancer cells with a high pH-responsive catalytic nanosystem. Nanoscale 7(16), 7275–7283 (2015)

    Article  CAS  PubMed  Google Scholar 

  116. Z. Wang et al., Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 9(1), 3334 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. D. Zhang et al., Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J. Mater. Chem. 1(38), 5100–5107 (2013)

    Article  CAS  Google Scholar 

  118. G. Fang et al., Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat. Commun. 9(1), 129 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. C. Ge et al., Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv. Funct. Mater. 28(28), 1801484 (2018)

    Article  CAS  Google Scholar 

  120. S. Rtimi et al., Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Appl. Catal. B Environ. 240, 291–318 (2019)

    Article  CAS  Google Scholar 

  121. M.N. Chong et al., Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    Article  CAS  PubMed  Google Scholar 

  122. H.A. Foster et al., Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90(6), 1847–1868 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. W. He et al., Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. J. Am. Chem. Soc. 136(2), 750–757 (2014)

    Article  CAS  PubMed  Google Scholar 

  124. X. Jiang et al., Light-induced assembly of metal nanoparticles on ZnO enhances the generation of charge carriers, reactive oxygen species, and antibacterial activity. J. Phys. Chem. C 122(51), 29414–29425 (2018)

    Article  CAS  Google Scholar 

  125. M.T. Lin, M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006)

    Article  CAS  PubMed  Google Scholar 

  126. Z. Liu et al., Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med. Cell. Longev. 2017, 2525967 (2017)

    Google Scholar 

  127. N. Singh et al., A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. 56(45), 14267–14271 (2017)

    Article  CAS  Google Scholar 

  128. C. Hao et al., Chiral molecule-mediated porous CuxO nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J. Am. Chem. Soc. 141(2), 1091–1099 (2019)

    Article  CAS  PubMed  Google Scholar 

  129. X. Mu et al., Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano 13(2), 1870–1884 (2019)

    CAS  PubMed  Google Scholar 

  130. K. Zhang et al., Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 19(5), 2812–2823 (2019)

    Article  CAS  PubMed  Google Scholar 

  131. C.K. Kim et al., Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl. 51(44), 11039–11043 (2012)

    Article  CAS  PubMed  Google Scholar 

  132. J. Yao et al., ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 9(11), 2927–2933 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. H. Wu, N. Tito, J.P. Giraldo, Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11(11), 11283–11297 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, T., Liu, J., He, W., Yang, A. (2020). Nanomaterials and Reactive Oxygen Species (ROS). In: Xu, H., Gu, N. (eds) Nanotechnology in Regenerative Medicine and Drug Delivery Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-5386-8_8

Download citation

Publish with us

Policies and ethics