Skip to main content

Application of Nanomaterials for Cancer Diagnosis and Therapy

  • Chapter
  • First Online:
Green Synthesis of Nanoparticles: Applications and Prospects
  • 392 Accesses

Abstract

The extensive application of nanoparticles in diverse fields, ranging from agricultural, environmental, computational, and industrial sciences to pharmaceutical and biomedical sciences, is expected to revolutionize many aspects of human life. With the continuous development of nanotechnology, the medical application of nanomaterials has gained increasing interests from both academic and industrial communities. Various functionalized nanomaterials, such as molecular imaging biomarkers and biosensors, drug carriers, biological devices, and nanomedicine, are designed and developed for specific medical purposes. In this chapter, we will give a brief introduction to nanotechnology and nanomaterials and their biomedical applications in cancer diagnosis and therapy; summarize their unique properties for cancer diagnostic and therapeutic applications; enumerate representative functionalized nanomaterials developed for biomedical applications, in particular their advantages and disadvantages for applications in early cancer detection and diagnosis as well as therapeutic drug discovery and delivery; and discuss the challenges and prospects for future exploitations of these nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNTs:

Carbon nanotubes

CT:

Computed tomography

EPR:

Enhanced permeability and retention

IONPs:

Iron oxide nanoparticles

MRI:

Magnetic resonance imaging

MSNs:

Mesoporous silica nanoparticles

MWCNT:

Multi-walled nanotubes

OI:

Optical imaging

PAMAM:

Poly(amidoamine)

PDT:

Photodynamic therapy

PEG:

Polyethylene glycol

PET:

Positron emission computed tomography

PLGA:

Poly(lactic-co-glycolic acid)

PTT:

Photothermal therapy

QDs:

Quantum dots

SPECT:

Single-photon emission computed tomography

SPIONPs:

Superparamagnetic iron oxide nanoparticles

SWCNT:

Single-walled nanotubes

US:

Ultrasonography

References

  1. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. https://doi.org/10.1038/nrd2614

    Article  CAS  PubMed  Google Scholar 

  2. Nam J, Won N, Bang J, Jin H, Park J, Jung S, Jung S, Park Y, Kim S (2013) Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 65(5):622–648. https://doi.org/10.1016/j.addr.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  3. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  PubMed  Google Scholar 

  4. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95(8):4607–4612. https://doi.org/10.1073/pnas.95.8.4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  CAS  Google Scholar 

  6. Takahashi A, Ohkohchi N, Yasunaga M, Kuroda J, Koga Y, Kenmotsu H, Kinoshita T, Matsumura Y (2010) Detailed distribution of NK012, an SN-38-incorporating micelle, in the liver and its potent antitumor effects in mice bearing liver metastases. Clin Cancer Res 16(19):4822–4831. https://doi.org/10.1158/1078-0432.CCR-10-1467

    Article  CAS  PubMed  Google Scholar 

  7. Ooya T, Lee J, Park K (2003) Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release 93(2):121–127

    Article  CAS  Google Scholar 

  8. Yao J, Hsu CH, Li Z, Kim TS, Hwang LP, Lin YC, Lin YY (2015) Magnetic resonance nano-theranostics for glioblastoma multiforme. Curr Pharm Des 21(36):5256–5266. https://doi.org/10.2174/1381612821666150923103307

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. https://doi.org/10.1016/j.addr.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  10. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626. https://doi.org/10.1016/j.addr.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  11. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9(5):1909–1915. https://doi.org/10.1021/nl900031y

    Article  CAS  PubMed  Google Scholar 

  12. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145(3):182–195. https://doi.org/10.1016/j.jconrel.2010.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129. https://doi.org/10.1021/ar7000815

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Tian S, Petros RA, Napier ME, Desimone JM (2010) The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc 132(32):11306–11313. https://doi.org/10.1021/ja1043177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z, Hong K, Kirpotin DB, Park JW (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65(24):11631–11638. https://doi.org/10.1158/0008-5472.CAN-05-1093

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen UB, Kirpotin DB, Pickering EM, Hong K, Park JW, Refaat Shalaby M, Shao Y, Benz CC, Marks JD (2002) Therapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis. Biochim Biophys Acta 1591(1–3):109–118. https://doi.org/10.1016/s0167-4889(02)00256-2

    Article  CAS  PubMed  Google Scholar 

  17. Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4):1172–1181

    CAS  PubMed  Google Scholar 

  18. Zhou Y, Drummond DC, Zou H, Hayes ME, Adams GP, Kirpotin DB, Marks JD (2007) Impact of single-chain Fv antibody fragment affinity on nanoparticle targeting of epidermal growth factor receptor-expressing tumor cells. J Mol Biol 371(4):934–947. https://doi.org/10.1016/j.jmb.2007.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poolsup S, Kim CY (2017) Therapeutic applications of synthetic nucleic acid aptamers. Curr Opin Biotechnol 48:180–186. https://doi.org/10.1016/j.copbio.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Qu D, Xue JW, Mo R, Ju CY, Jin X, Zhang C (2015) Extracellular pH-sensitive mixed micelles for prostate tumor targeted anticancer drug delivery. J Control Release 213:e14. https://doi.org/10.1016/j.jconrel.2015.05.019

    Article  PubMed  Google Scholar 

  21. Chen G, Wang Y, Xie R, Gong S (2017) Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. J Control Release 259:105–114. https://doi.org/10.1016/j.jconrel.2017.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He H, Sun L, Ye J, Liu E, Chen S, Liang Q, Shin MC, Yang VC (2016) Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents. J Control Release 240:67–76. https://doi.org/10.1016/j.jconrel.2015.10.040

    Article  CAS  PubMed  Google Scholar 

  23. Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X (2018b) Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release 272:145–158. https://doi.org/10.1016/j.jconrel.2017.04.028

    Article  CAS  PubMed  Google Scholar 

  24. Obata Y, Tajima S, Takeoka S (2010) Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 142(2):267–276. https://doi.org/10.1016/j.jconrel.2009.10.023

    Article  CAS  PubMed  Google Scholar 

  25. Guo X, Cheng Y, Zhao X, Luo Y, Chen J, Yuan WE (2018a) Advances in redox-responsive drug delivery systems of tumor microenvironment. J Nanobiotechnol 16(1):74. https://doi.org/10.1186/s12951-018-0398-2

    Article  CAS  Google Scholar 

  26. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135. https://doi.org/10.1016/j.canlet.2005.07.035

    Article  CAS  PubMed  Google Scholar 

  27. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125(16):4700–4701. https://doi.org/10.1021/ja0296935

    Article  CAS  PubMed  Google Scholar 

  28. Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131(6):2072–2073. https://doi.org/10.1021/ja808719p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692. https://doi.org/10.1021/nn200007z

    Article  CAS  PubMed  Google Scholar 

  30. Blaszkiewicz P, Kotkowiak M (2018) Gold-based nanoparticles systems in phototherapy—current strategies. Curr Med Chem 25(42):5914–5929. https://doi.org/10.2174/0929867325666181031120757

    Article  CAS  PubMed  Google Scholar 

  31. Chen T, Xu S, Zhao T, Zhu L, Wei D, Li Y, Zhang H, Zhao C (2012) Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. ACS Appl Mater Interfaces 4(11):5766–5774. https://doi.org/10.1021/am301223n

    Article  CAS  PubMed  Google Scholar 

  32. Hoskins C, Min Y, Gueorguieva M, McDougall C, Volovick A, Prentice P, Wang Z, Melzer A, Cuschieri A, Wang L (2012) Hybrid gold-iron oxide nanoparticles as a multifunctional platform for biomedical application. J Nanobiotechnol 10:27. https://doi.org/10.1186/1477-3155-10-27

    Article  CAS  Google Scholar 

  33. Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24(11):1418–1423. https://doi.org/10.1002/adma.201104714

    Article  CAS  PubMed  Google Scholar 

  34. Minati L, Antonini V, Dalla Serra M, Speranza G (2012) Multifunctional branched gold-carbon nanotube hybrid for cell imaging and drug delivery. Langmuir 28(45):15900–15906. https://doi.org/10.1021/la303298u

    Article  CAS  PubMed  Google Scholar 

  35. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534. https://doi.org/10.1002/adma.201104763

    Article  CAS  PubMed  Google Scholar 

  36. Asefa T, Tao Z (2012) Biocompatibility of mesoporous silica nanoparticles. Chem Res Toxicol 25(11):2265–2284. https://doi.org/10.1021/tx300166u

    Article  CAS  PubMed  Google Scholar 

  37. Mai WX, Meng H (2013) Mesoporous silica nanoparticles: a multifunctional nano therapeutic system. Integr Biol 5(1):19–28. https://doi.org/10.1039/c2ib20137b

    Article  CAS  Google Scholar 

  38. Wen J, Yang K, Liu F, Li H, Xu Y, Sun S (2017) Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 46(19):6024–6045. https://doi.org/10.1039/c7cs00219j

    Article  CAS  PubMed  Google Scholar 

  39. de la Torre C, Mondragon L, Coll C, Sancenon F, Marcos MD, Martinez-Manez R, Amoros P, Perez-Paya E, Orzaez M (2014) Cathepsin-B induced controlled release from peptide-capped mesoporous silica nanoparticles. Chemistry 20(47):15309–15314. https://doi.org/10.1002/chem.201404382

    Article  CAS  PubMed  Google Scholar 

  40. Tan L, Yang MY, Wu HX, Tang ZW, Xiao JY, Liu CJ, Zhuo RX (2015) Glucose- and pH-responsive nanogated ensemble based on polymeric network capped mesoporous silica. ACS Appl Mater Interfaces 7(11):6310–6316. https://doi.org/10.1021/acsami.5b00631

    Article  CAS  PubMed  Google Scholar 

  41. Li LL, Xie M, Wang J, Li X, Wang C, Yuan Q, Pang DW, Lu Y, Tan W (2013) A vitamin-responsive mesoporous nanocarrier with DNA aptamer-mediated cell targeting. Chem Commun 49(52):5823–5825. https://doi.org/10.1039/c3cc41072b

    Article  CAS  Google Scholar 

  42. Liu R, Zhang Y, Zhao X, Agarwal A, Mueller LJ, Feng P (2010) pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J Am Chem Soc 132(5):1500–1501. https://doi.org/10.1021/ja907838s

    Article  CAS  PubMed  Google Scholar 

  43. Gan Q, Lu X, Yuan Y, Qian J, Zhou H, Lu X, Shi J, Liu C (2011) A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. Biomaterials 32(7):1932–1942. https://doi.org/10.1016/j.biomaterials.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  44. Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149. https://doi.org/10.1126/scitranslmed.3009524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Radu DR, Lai CY, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 126(41):13216–13217. https://doi.org/10.1021/ja046275m

    Article  CAS  PubMed  Google Scholar 

  46. Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, DeStanchina E, Longo V, Herz E, Iyer S, Wolchok J, Larson SM, Wiesner U, Bradbury MS (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121(7):2768–2780. https://doi.org/10.1172/JCI45600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giri S, Trewyn BG, Stellmaker MP, Lin VS (2005) Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem 44(32):5038–5044. https://doi.org/10.1002/anie.200501819

    Article  CAS  Google Scholar 

  48. Kramer R, Friedricn T (2005) Structure of functional modules from energy-transducing complexes in prokaryotes: examples for molecular machines. J Mol Microbiol Biotechnol 10(2–4):73–75. https://doi.org/10.1159/000091555

    Article  CAS  PubMed  Google Scholar 

  49. Pohl JF, Judkins J, Meihls S, Lowichik A, Chatfield BA, McDonald CM (2010) Cystic fibrosis and celiac disease: both can occur together. Clin Pediatr. https://doi.org/10.1177/0009922810388512

  50. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834. https://doi.org/10.1039/c4cs00532e

    Article  CAS  PubMed  Google Scholar 

  51. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51. https://doi.org/10.1038/nbt767

    Article  CAS  PubMed  Google Scholar 

  52. Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354. https://doi.org/10.1039/b915139g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Savla R, Taratula O, Garbuzenko O, Minko T (2011) Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release 153(1):16–22. https://doi.org/10.1016/j.jconrel.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  54. Peng CW, Tian Q, Yang GF, Fang M, Zhang ZL, Peng J, Li Y, Pang DW (2012) Quantum-dots based simultaneous detection of multiple biomarkers of tumor stromal features to predict clinical outcomes in gastric cancer. Biomaterials 33(23):5742–5752. https://doi.org/10.1016/j.biomaterials.2012.04.034

    Article  CAS  PubMed  Google Scholar 

  55. Jing L, Ding K, Kershaw SV, Kempson IM, Rogach AL, Gao M (2014) Magnetically engineered semiconductor quantum dots as multimodal imaging probes. Adv Mater 26(37):6367–6386. https://doi.org/10.1002/adma.201402296

    Article  CAS  PubMed  Google Scholar 

  56. Lee PC, Chiou YC, Wong JM, Peng CL, Shieh MJ (2013) Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials 34(34):8756–8765. https://doi.org/10.1016/j.biomaterials.2013.07.067

    Article  CAS  PubMed  Google Scholar 

  57. Zhang H, Hou L, Jiao X, Yandan J, Zhu X, Hongji L, Chen X, Ren J, Xia Y, Zhang Z (2014) In vitro and in vivo evaluation of antitumor drug-loaded aptamer targeted single-walled carbon nanotubes system. Curr Pharm Biotechnol 14(13):1105–1117

    Article  Google Scholar 

  58. Ren J, Shen S, Wang D, Xi Z, Guo L, Pang Z, Qian Y, Sun X, Jiang X (2012) The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33(11):3324–3333. https://doi.org/10.1016/j.biomaterials.2012.01.025

    Article  CAS  PubMed  Google Scholar 

  59. Hu S, Wang T, Pei X, Cai H, Chen J, Zhang X, Wan Q, Wang J (2016) Synergistic enhancement of antitumor efficacy by PEGylated multi-walled carbon nanotubes modified with cell-penetrating peptide TAT. Nanoscale Res Lett 11(1):452. https://doi.org/10.1186/s11671-016-1672-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Burke A, Ding X, Singh R, Kraft RA, Levi-Polyachenko N, Rylander MN, Szot C, Buchanan C, Whitney J, Fisher J, Hatcher HC, D’Agostino R Jr, Kock ND, Ajayan PM, Carroll DL, Akman S, Torti FM, Torti SV (2009) Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc Natl Acad Sci U S A 106(31):12897–12902. https://doi.org/10.1073/pnas.0905195106

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES (2008) Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc Natl Acad Sci U S A 105(25):8697–8702. https://doi.org/10.1073/pnas.0803557105

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci U S A 102(33):11600–11605. https://doi.org/10.1073/pnas.0502680102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh R, Torti SV (2013) Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 65(15):2045–2060. https://doi.org/10.1016/j.addr.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107. https://doi.org/10.1021/ar9000026

    Article  CAS  PubMed  Google Scholar 

  65. Kim KS, Kim J, Lee JY, Matsuda S, Hideshima S, Mori Y, Osaka T, Na K (2016) Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Nanoscale 8(22):11625–11634. https://doi.org/10.1039/c6nr02273a

    Article  CAS  PubMed  Google Scholar 

  66. Hu Y, Mignani S, Majoral JP, Shen M, Shi X (2018) Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem Soc Rev 47(5):1874–1900. https://doi.org/10.1039/c7cs00657h

    Article  CAS  PubMed  Google Scholar 

  67. Duzgune, scedil, Nir S (1999) Mechanisms and kinetics of liposome-cell interactions. Adv Drug Deliv Rev 40(1–2):3–18

    Article  Google Scholar 

  68. Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R, Christofori G, Mamot C (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18(2):454–464. https://doi.org/10.1158/1078-0432.CCR-11-1102

    Article  CAS  PubMed  Google Scholar 

  69. Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134. PMID: 22484195

    Google Scholar 

  70. Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ (2006) Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 17(8):1263–1268. PMID: 16740598

    Google Scholar 

  71. Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K (2004) Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 12(7):461–471. https://doi.org/10.1080/10611860400010697

    Article  CAS  PubMed  Google Scholar 

  72. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5(3):169–181. https://doi.org/10.1002/jbm.820050305

    Article  CAS  PubMed  Google Scholar 

  73. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161(2):264–273. https://doi.org/10.1016/j.jconrel.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  75. Hu K, Zhou H, Liu Y, Liu Z, Liu J, Tang J, Li J, Zhang J, Sheng W, Zhao Y, Wu Y, Chen C (2015) Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 7(18):8607–8618. https://doi.org/10.1039/c5nr01084e

    Article  CAS  PubMed  Google Scholar 

  76. Wu J, Zhang J, Deng C, Meng F, Cheng R, Zhong Z (2017) Robust, responsive, and targeted PLGA anticancer nanomedicines by combination of reductively cleavable surfactant and covalent hyaluronic acid coating. ACS Appl Mater Interfaces 9(4):3985–3994. https://doi.org/10.1021/acsami.6b15105

    Article  CAS  PubMed  Google Scholar 

  77. Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ (2012) α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 6(5):4530–4539. PMID: 22584163

    Google Scholar 

  78. Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959. https://doi.org/10.1021/cr900327d

    Article  CAS  PubMed  Google Scholar 

  79. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478. https://doi.org/10.1038/nnano.2007.223

    Article  CAS  PubMed  Google Scholar 

  80. Yao X, Niu X, Ma K, Huang P, Grothe J, Kaskel S, Zhu Y (2017) Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13(2):1602225. https://doi.org/10.1002/smll.201602225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports were provided by the National Natural Science Foundation of China (81901232, 81773620) and Shanghai Sailing Program (20YF1402800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianwen Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, S., Li, Y., Ju, D. (2020). Application of Nanomaterials for Cancer Diagnosis and Therapy. In: Saquib, Q., Faisal, M., Al-Khedhairy, A.A., Alatar, A.A. (eds) Green Synthesis of Nanoparticles: Applications and Prospects. Springer, Singapore. https://doi.org/10.1007/978-981-15-5179-6_6

Download citation

Publish with us

Policies and ethics