Skip to main content

Neuropharmacology: Looking Forward to the Future

  • Chapter
  • First Online:
  • 486 Accesses

Abstract

Neuropharmacology is a field that utilizes the knowledge about drugs, especially their mechanism of action to develop safe and effective medicines for the cure of a variety of neurological disorders. Increasing number of patients suffering from the diseases all over the world have accounted for billions of dollars in the healthcare industry. Thus the demand for effective medicines is increasing globally. Innovative methods are being explored for drug development as there is still no cure or any effective disease-modifying therapy because the existing drugs just aid in managing the symptoms of these diseases. With the help of advancing technology, efforts have been made to understand the molecular structure of receptors and neurotransmitters to synthesize target-specific drugs that would not produce any unwanted side effects. This review tries to discuss different approaches like omics technology, neural engineering, stem cells, gene therapy, and antiviral therapies for the successful understanding of pathology of disease that would lead to drugs that would be specific and free from any unwanted effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nestler EJ, Hyman SE, Malenka RC (2008) Molecular neuropharmacology: a foundation for clinical neuroscience, 2nd edn. McGraw-Hill, New York, USA

    Google Scholar 

  2. Wagner EH, Groves T (2002) Care for chronic diseases. BMJ 325:913–914

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu J (2013) Today in psychopharmacology and neuropharmacology. Biochem Pharmacol S1:e001

    Google Scholar 

  4. Haggarty SJ, Perlis RH (2014) Translation: screening for novel therapeutics with disease-relevant cell types derived from human stem cell models. Biol Psychiatry 75:952–960

    Article  CAS  PubMed  Google Scholar 

  5. Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W (2019a) Induced pluripotent stem cells for neural drug discovery. Drug Discov Today 24:992–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charney DS, Mihic SJ, Harris RA (2001) Hypnotics and sedatives. In: Hardman JG, Limbard LE (eds) Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th edn. Mc Graw Hill, New York

    Google Scholar 

  7. Choong CJ, Baba K, Mochizuki H (2016) Gene therapy for neurological disorders. Exp Opin Biol Therapy 16:143–159

    Article  CAS  Google Scholar 

  8. O’Connor DM, Boulis NM (2015) Gene therapy for neurodegenerative diseases. Trends Mol Med 21:504–512

    Article  PubMed  CAS  Google Scholar 

  9. Gowing G, Svendsen S, Svendsen CN (2017) Ex vivo gene therapy for the treatment of neurological disorders. Prog Brain Res 230:99–132

    Article  PubMed  Google Scholar 

  10. Savic N, Schwank G (2016) Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168:15–21

    Article  CAS  PubMed  Google Scholar 

  11. Nanou A, Azzouz M (2009) Gene therapy for neurodegenerative diseases based on lentiviral vectors. Prog Brain Res 175:187–200

    Article  CAS  PubMed  Google Scholar 

  12. Weinberg MS, Samulski RJ, McCown TJ (2013) Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 69:82–88

    Article  CAS  PubMed  Google Scholar 

  13. Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J, Schneider B, Capowski E, Hei D, Kordower J, Aebischer P, Svendsen CN (2006) Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13:379–388

    Article  CAS  PubMed  Google Scholar 

  14. Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, Aebischer P, Svendsen CN (2005) GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509–521

    Article  CAS  PubMed  Google Scholar 

  15. Naldini L (2011) Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet 12:301–315

    Article  CAS  PubMed  Google Scholar 

  16. Piguet F, Alves S, Cartier N (2017) Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Therapy 28:988–1003

    Article  CAS  Google Scholar 

  17. Zhang J, Wu X, Qin C, Qi J, Ma S, Zhang H, Kong Q, Chen D, Ba D, He W (2003) A novel recombinant adeno-associated virus vaccine reduces behavioral impairment and beta-amyloid plaques in a mouse model of Alzheimer’s disease. Neurobiol Dis 14:365–379

    Article  CAS  PubMed  Google Scholar 

  18. Mouri A, Noda Y, Hara H, Mizoguchi H, Tabira T, Nabeshima T (2007) Oral vaccination with a viral vector containing Abeta cDNA attenuates agerelated Abeta accumulation and memory deficits without causing inflammation in a mouse Alzheimer model. FASEB J 21:2135–2148

    Article  CAS  PubMed  Google Scholar 

  19. Eberling JL, Jagust WJ, Christine CW, Starr P, Larson P, Bankiewicz KS, Aminoff MJ (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983

    Article  CAS  PubMed  Google Scholar 

  20. Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF, Bankiewicz KS, Aminoff MJ (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M, Kume A, Sato T, Watanabe E, Ozawa K, Nakano I (2010) A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kalpan PL, Forsayeth J, Aminoff MJ, Bankiewicz KS (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang YL, Liu W, Wada E, Murata M, Wada K, Kanazawa I (2005) Clinico-pathological rescue of a model mouse of Huntington’s disease by siRNA. Neurosci Res 53:241–249

    Article  CAS  PubMed  Google Scholar 

  24. Thomsen GM, Gowing G, Latter J, Chen M, Vit JP, Staggenborg K, Avalos P, Alkaslasi M, Ferraiuolo L, Likhite S, Kaspar BK, Svendsen CN (2014) Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci 34:15587–15600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Xu DG, Crocker SJ, Doucet JP (1997) Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 3:997–1004

    Article  CAS  PubMed  Google Scholar 

  26. Johnson RT (1995) Neurovirology: evolution of a new discipline. J Neuro-Oncol 1:2–4

    Google Scholar 

  27. Goodpasture EW (1929) Herpetic infection, with especial reference to involvement of the nervous system. Medicine 8:223–243

    Article  Google Scholar 

  28. Oldstone MBA, Rall GF (1993) Mechanism and consequence of viral persistence in cells of the immune system and neurons. Infervirology 35:116–121

    Article  CAS  Google Scholar 

  29. Haubenberger D, Clifford DB (2016) Clinical trials in neurovirology: successes, challenges and pitfalls. Neurotherapeutics 13:571–581

    Article  PubMed  PubMed Central  Google Scholar 

  30. Califf RM, Sugarman J (2015) Exploring the ethical and regulatory issues in pragmatic clinical trials. Clin Trials 12:436–441

    Article  PubMed  PubMed Central  Google Scholar 

  31. Proschan MA, Dodd LE, Price D (2016) Statistical considerations for a trial of Ebola virus disease therapeutics. Clin Trials 13:39–48

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berry SM, Petzold EA, Dull P, Thielman NM, Cunningham CK, Corey GR, McClain MT, Hoover DL, Russell J, Griffiss JM, Woods CW (2016) A response adaptive randomization platform trial for efficient evaluation of Ebola virus treatments: a model for pandemic response. Clin Trials 13:22–30

    Article  PubMed  PubMed Central  Google Scholar 

  33. Duan N, Kravitz RL, Schmid CH (2013) Single-patient (n-of-1) trials: a pragmatic clinical decision methodology for patient-centered comparative effectiveness research. J Clin Epidemiol 66:21–28

    Article  Google Scholar 

  34. U.S. National Library of Medicine (2019a) Dexamethasone in Herpes Simplex Virus Encephalitis (DexEnceph). https://clinicaltrials.gov/ct2/show/NCT03084783. Accessed 31 Aug 2019

  35. U.S. National Library of Medicine (2019b) Long Term Treatment of Herpes Simplex Encephalitis (HSE) with Valacyclovir. https://clinicaltrials.gov/ct2/show/NCT00031486. Accessed 31 Aug 2019

  36. U.S. National Library of Medicine (2019c) Intranasal Treatment of HIV-associated Neurocognitive Disorders. https://clinicaltrials.gov/ct2/show/NCT03277222. Accessed 31 Aug 2019

  37. U.S. National Library of Medicine (2019d) Early Intensification of Antiretroviral Therapy Including Enfuvirtide in HIV-1-Related Progressive Multifocal Leucoencephalopathy. https://clinicaltrials.gov/ct2/show/NCT00120367?term=Progressive+Multifocal+Leukoencephalopathy&rank=6. Accessed 31 Aug 2019

  38. Shi Y, Innoue H, Wu JC, Yamanaka S (2017) Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 16:115–130

    Article  CAS  PubMed  Google Scholar 

  39. Xu M, Motabar O, Ferrer M, Marugan JJ, Zheng W, Ottinger EA (2016) Disease models for the development of therapies for lysosomal storage diseases. Ann N Y Acad Sci 1371:15–29

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lindvall O, Kokia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10:42–50

    Article  CAS  Google Scholar 

  41. Lindvall O, Kokaia Z (2006) Stem cells for the treatment of neurological disorders. Nature 441:1094–1096

    Article  CAS  PubMed  Google Scholar 

  42. Mattis VB et al (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:264–278

    Article  PubMed Central  CAS  Google Scholar 

  43. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  45. Adegbola A et al (2017) Concise review: induced pluripotent stem cell models for neuropsychiatric diseases. Stem Cells Transl Med 6:2062–2070

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kondo T et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12:487–496

    Article  CAS  PubMed  Google Scholar 

  47. Imaizumi Y, Okano H (2014) Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem I 29:388–399

    Article  CAS  Google Scholar 

  48. Raab S, Klingenstein M, Liebau S, Linta L (2014) A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391

    Article  PubMed  PubMed Central  Google Scholar 

  49. Soliman MA, Aboharb F, Zeltner N, Studer L (2017) Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry 22:1241–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun W, Zheng W, Simeonov A (2017) Drug discovery and development for rare genetic disorders. Am J Med Genet A 173:2307–2322

    Article  PubMed  PubMed Central  Google Scholar 

  51. Farkhondeh A, Li R, Gorshkov K, Chen KG, Might M, Rodems S, Lo DC, Zheng W (2019b) Induced pleuripotent stem cells for neural drug discovery. Drug Discov Today 24:992–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Debnath M, Prasad GBKS, Bisen PS (2010) Molecular diagnostics: promises and possibilities. Springer Dordrecht Heidelberg, London

    Book  Google Scholar 

  53. Crowther LM, Poms M, Plecko B (2018) Multiomics tools for the diagnosis and treatment of rare neurological disease. J Inherit Metab Dis 41:425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abela L, Simmons L, Steindl K et al (2016) N (8)-acetylspermidine as a potential plasma biomarker for Snyder-Robinson syndrome identified by clinical metabolomics. J Inherit Metab Dis 39:131–137

    Article  CAS  PubMed  Google Scholar 

  55. Abela L, Spiegel R, Crowther LM et al (2017) Plasma metabolomics reveals a diagnostic metabolic fingerprint for mitochondrial aconitase (ACO2) deficiency. PLoS One 12:e0176363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Sirrs S, van Karnebeek CD, Peng X et al (2015) Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms. Orphanet J Rare Dis 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tarailo-Graovac M, Shyr C, Ross CJ et al (2016) Exome sequencing and the management of neurometabolic disorders. N Engl J Med 374:2246–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Durand DM (2007) What is neural engineering? J Neural Eng 4:4

    Google Scholar 

  59. Mitrasinovic S, Brown APY, Schaefer AT, Steven DC, Appelboom G (2018) Silicon valley new focus on brain computer interface: hype or hope for new applications? F1000 Res 7:1327

    Article  Google Scholar 

  60. Hochberg LR, Bacher D, Jarosiewicz B et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siju, E.N., Rajalakshmi, G.R. (2020). Neuropharmacology: Looking Forward to the Future. In: Mathew, B., Thomas Parambi, D.G. (eds) Principles of Neurochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5167-3_10

Download citation

Publish with us

Policies and ethics