Skip to main content

Dendrimer-Based Tumor-targeted Systems

  • Chapter
  • First Online:
New Nanomaterials and Techniques for Tumor-targeted Systems

Abstract

Dendrimers have a unique three-dimensional structure, highly branched macromolecular features, and abundant terminal functional groups. These features of dendrimers support their uses as universal nanoplatforms to prepare multifunctional nanodevices for a myriad of biomedical applications, particularly for targeted imaging and therapy of different biosystems. The periphery of the dendrimer enables the attachment of targeting ligands and imaging agents, while the internal cavity allows the embedment of metal nanoparticles (NPs), anticancer drugs, and other inorganic NPs. Meanwhile, the versatile dendrimer nanotechnology enables different types of integration with varied inorganic components. The resulting hybrid dendrimer-based particles are useful in a variety of imaging, therapy, or theranostic applications. This chapter focuses on the latest advances in the dendrimer-based targeting systems for the imaging, therapy, and theranostics of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3D:

3-dimensional

99mTc:

Technetium-99m

α-TOS:

α-tocopheryl succinate

AuNPs:

Gold nanoparticles

AFM:

Atomic force microscopy

Au DENPs-FA:

Folic acid-modified dendrimer-entrapped gold nanoparticles

ASGPR:

Asialoglycoprotein receptors

BBB:

Blood brain barrier

bis-MPA:

2,2-bis(hydroxymethyl)propionic acid

CT:

Computer tomography

DOTA:

Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOTA-NHS:

(2,2′,2′′-(10-(2-(2,5-dioxopyrrolidin-1-yloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid

DTPA:

Diethylenetriaminepentaacetic acid

DENPs/DSNPs:

Dendrimer-entrapped nanoparticles/dendrimer-stabilized nanoparticles

DOX:

Doxorubicin

EPR:

Enhanced permeability and retention

EGFP:

Enhanced green fluorescent protein

FA:

Folic acid

FAR:

FA receptors

FA-PEG-COOH:

PEG-modified FA with carboxyl end group

FI:

Fluorescein isothiocyanate

FDG:

2-18F-fluoro-2-deoxy-D-glucose

FAM:

Fluorescein amidite

FPP:

FA-PEG-PAMAM

Gd-Au DENPs:

Gd-loaded Au DENPs

G:

Generation

Gal:

Galactose

HA:

Hyaluronic acid

HPAO:

3-(4’-hydroxyphenyl) propionic acid-OSu

hMSCs:

Human mesenchymal stem cells

HER2:

Human epidermal growth factor receptor-2

HEGFR:

Human epidermal growth factor receptor

HCC:

Hepatocellular carcinoma

HUVEC:

Human umbilical vein endothelial cells

IO:

Iron oxide

IL-6:

Interleukin-6

LA:

Lactobionic acid

LA-Au DENPs:

LA-modified dendrimer-entrapped gold nanoparticles

Luc:

Luciferase

MR:

Magnetic resonance

MWCNTs:

Multi-walled carbon nanotubes

mPEG-COOH:

PEG monomethyl ether with carboxyl end group

NCPs:

Nanocomposite particles

PEG:

Polyethylene glycol

NAcGal:

N-acetylgalactosamine

PAMAM:

Poly(amidoamine)

PLL:

Poly(l-lysine)

PPI:

poly(propyleneimine)

PSMA:

Prostate specific membrane antigen

PET:

Positron emission computed tomography

PGA:

Poly(γ-glutamic acid)

QDs:

Quantum dots

RGD:

Arg-Gly-Asp

RGD-4C:

Cyclized RGD

RT:

Radiotherapy

SPECT:

Single-photon emission computed tomography

SMVT:

Sodium-dependent multivitamin transporter

US:

Ultrasound

References

  1. Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 276(6):579–617

    Article  CAS  PubMed  Google Scholar 

  2. Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 64:102–115

    Article  Google Scholar 

  3. Hu JJ, Xu TW, Cheng YY (2012) NMR insights into Dendrimer-based host–guest systems. Chem Rev 112(7):3856–3891

    Article  CAS  PubMed  Google Scholar 

  4. Cheng YY, Zhao LB, Li YW, Xu TW (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40(5):2673–2703

    Article  CAS  PubMed  Google Scholar 

  5. Tomalia DA (2012) Interview: An architectural journey: from trees, dendrons/dendrimers to nanomedicine. Nanomedicine 7(7):953–956

    Article  CAS  PubMed  Google Scholar 

  6. Tomalia DA, Christensen JB, Boas U (2012) Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30(3):294–324

    Article  CAS  Google Scholar 

  8. Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    Article  CAS  PubMed  Google Scholar 

  9. Somani S, Dufès C (2014) Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine 9(15):2403–2414

    Article  CAS  PubMed  Google Scholar 

  10. Sun QH, Sun XR, Ma XP, Zhou ZX, Jin E, Zhang B, Shen YQ, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao YL (2014) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26(45):7615–7621

    Article  CAS  PubMed  Google Scholar 

  11. Zhou ZX, Ma XP, Murphy CJ, Jin E, Sun QH, Shen YQ, Van Kirk EA, Murdoch WJ (2014) Molecularly precise dendrimer–drug conjugates with tunable drug release for cancer therapy. Angew Chem Int Ed 53(41):10949–10955

    Article  CAS  Google Scholar 

  12. Ye MZ, Qian Y, Tang JB, Hu HJ, Sui MH, Shen YQ (2013) Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. J Control Release 169(3):239–245

    Article  CAS  PubMed  Google Scholar 

  13. Tian WD, Ma YQ (2013) Theoretical and computational studies of dendrimers as delivery vectors. Chem Soc Rev 42(2):705–727

    Article  CAS  PubMed  Google Scholar 

  14. Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64(9):826–835

    Article  CAS  PubMed  Google Scholar 

  15. Wang Y, Zhao Q, Zhang H, Yang S, Jia XR (2014) A novel poly(amido amine)-dendrimer-based hydrogel as a mimic for the extracellular matrix. Adv Mater 26(24):4163–4167

    Article  CAS  PubMed  Google Scholar 

  16. Ghobril C, Charoen K, Rodriguez EK, Nazarian A, Grinstaff MW (2013) A dendritic thioester hydrogel based on thiol–thioester exchange as a dissolvable sealant system for wound closure. Angew Chem Int Ed 52(52):14070–14074

    Article  CAS  Google Scholar 

  17. Dufès C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57(15):2177–2202

    Article  PubMed  CAS  Google Scholar 

  18. Yang JP, Zhang Q, Chang H, Cheng YY (2015) Surface-engineered dendrimers in gene delivery. Chem Rev 115(11):5274–5300

    Article  CAS  PubMed  Google Scholar 

  19. Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4(5):372–379

    Google Scholar 

  20. Arima H, Motoyama K, Higashi T (2013) Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv Drug Deliv Rev 65(9):1204–1214

    Article  CAS  PubMed  Google Scholar 

  21. Gray WD, Wu RJ, Yin X, Zhou JH, Davis ME, Luo Y (2013) Dendrimeric bowties featuring hemispheric-selective decoration of ligands for microRNA-based therapy. Biomacromolecules 14(1):101–109

    Article  CAS  PubMed  Google Scholar 

  22. Zhang WL, Li N, Huang J, Yu JH, Wang DX, Li YP, Liu SY (2010) Gadolinium-conjugated FA-PEG-PAMAM-COOH nanoparticles as potential tumor-targeted circulation-prolonged macromolecular MRI contrast agents. J Appl Polym Sci 118(3):1805–1814

    CAS  Google Scholar 

  23. Wen SH, Liu H, Cai HD, Shen MW, Shi XY (2013) Targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes. Adv Healthc Mater 2(9):1267–1276

    Google Scholar 

  24. Shi XY, Wang SH, Meshinchi S, Van Antwerp ME, Bi XD, Lee I, Baker JR (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252

    Article  CAS  PubMed  Google Scholar 

  25. Hu JJ, Hu K, Cheng YY (2016) Tailoring the dendrimer core for efficient gene delivery. Acta Biomater 35:1–11

    Article  PubMed  CAS  Google Scholar 

  26. Xu XY, Ho W, Zhang XQ, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21(4):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bamrungsap S, Zhao ZL, Chen T, Wang L, Li CM, Fu T, Tan WH (2012) Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine 7(8):1253–1271

    Article  CAS  PubMed  Google Scholar 

  28. Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29(7):323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  PubMed  Google Scholar 

  30. Zhu JY, Shi XY (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1(34):4199–4211

    Article  CAS  PubMed  Google Scholar 

  31. Kukowska-Latallo JF, Candido KA, Cao ZY, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324

    Article  CAS  PubMed  Google Scholar 

  32. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7(2):572–579

    Article  CAS  PubMed  Google Scholar 

  33. Majoros IJ, Thomas TP, Mehta CB, Baker JR (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 48(19):5892–5899

    Article  CAS  PubMed  Google Scholar 

  34. Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19(11):2239–2252

    Google Scholar 

  35. Thomas TP, Huang BH, Choi SK, Silpe JE, Kotlyar A, Desai AM, Zong H, Gam J, Joice M, Baker JRJ (2012) Polyvalent dendrimer-methotrexate as a folate receptor-targeted cancer therapeutic. Mol Pharm 9(9):2669–2676

    Google Scholar 

  36. Shukla R, Thomas TP, Peters J, Kotlyar A, Myc A, Baker JR (2005) Tumor angiogenic vasculature targeting with PAMAM dendrimer-RGD conjugates. Chem Commun 14(46):5739–5741

    Article  CAS  Google Scholar 

  37. Liu J, Gray WD, Davis ME, Luo Y (2012) Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2(3):307–324

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li ZM, Huang P, Zhang XJ, Lin J, Yang S, Liu B, Gao F, Xi P, Ren QS, Cui DX (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7(1):94–104

    Google Scholar 

  39. Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, Baker JR (2004) In vitro targeting of synthesized anti body-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274

    Article  CAS  PubMed  Google Scholar 

  40. Huang J, Gao F, Tang XX, Yu JH, Wang DX, Liu SY, Li YP (2010) Liver-targeting doxorubicin-conjugated polymeric prodrug with pH-triggered drug release profile. Polym Int 59(10):1390–1396

    Article  CAS  Google Scholar 

  41. Medina SH, Tekumalla V, Chevliakov MV, Shewach DS, Ensminger WD, El-Sayed MEH (2011) N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials 32(17):4118–4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Selim KMK, Ha YS, Kim SJ, Chang YM, Kim TJ, Lee GH, Kang IK (2007) Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28(4):710–716

    Article  CAS  Google Scholar 

  43. Shi XY, Wang SH, Swanson SD, Ge S, Cao ZY, Van Antwerp ME, Landmark KJ, Baker JR (2008) Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors. Adv Mater 20(9):1671–1678

    Article  CAS  Google Scholar 

  44. Zhao YL, Liu S, Li YP, Jiang W, Chang YL, Pan S, Fang XX, Wang YA, Wang JY (2010) Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci 350(1):44–50

    Article  CAS  PubMed  Google Scholar 

  45. Kono K, Liu MJ, Frechet JMJ (1999) Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug Chem 10(6):1115–1121

    Google Scholar 

  46. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162

    Article  CAS  PubMed  Google Scholar 

  47. Majoros IJ, Williams CR, Becker A, Baker JRJ (2009) Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):502–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi SK, Thomas T, Li MH, Kotlyar A, Desai A, Baker JRJ (2010) Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem Commun 46(15):2632–2634

    Article  CAS  Google Scholar 

  49. Myc A, Kukowska-Latallo J, Cao P, Swanson B, Battista J, Dunham T, Baker JR (2010) Targeting the efficacy of a dendrimer-based nanotherapeutic in heterogeneous xenograft tumors in vivo. Anti-Cancer Drugs 21(2):186–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shukla R, Hill E, Shi XY, Kim J, Muniz MC, Sun K, Baker JRJ (2008) Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 4(11):2160–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lesniak WG, Kariapper MST, Nair BM, Tan W, Hutson A, Balogh LP, Khan MK (2007) Synthesis and characterization of PAMAM dendrimer-based multifunctional nanodevices for targeting alpha(v)beta(3) integrins. Bioconjug Chem 18(4):1148–1154

    Google Scholar 

  52. Hill E, Shukla R, Park SS, Baker JR (2007) Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures. Bioconjug Chem 18(6):1756–1762

    Google Scholar 

  53. Waite CL, Roth CM (2009) PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem 20(10):1908–1916

    Google Scholar 

  54. Patri AK, Myc A, Beals J, Thomas TP, Bander NH, Baker JR (2004) Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15(6):1174–1181

    Google Scholar 

  55. Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, Kotlyar A, Baker JR (2006) HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 17(5):1109–1115

    Google Scholar 

  56. Mekuria SL, Tsai HC (2015) Preparation of self-assembled core-shell nano structure of conjugated generation 4.5 poly (amidoamine) dendrimer and monoclonal Anti-IL-6 antibody as bioimaging probe. Colloid Surf B: Biointerfaces 135:253–260

    Google Scholar 

  57. Mekuria SL, Debele TA, Chou HY, Tsai HC (2016) IL-6 antibody and RGD peptide conjugated poly(amidoamine) dendrimer for targeted drug delivery of HeLa cells. J Phys Chem B 120(1):123–130

    Article  CAS  PubMed  Google Scholar 

  58. Xu LY, Zhang H, Wu YL (2014) Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci 5(1):2–13

    Article  CAS  PubMed  Google Scholar 

  59. Yellepeddi VK, Kumar A, Palakurthi S (2009) Biotinylated poly(amido)amine (PAMAM) dendrimers as carriers for drug delivery to ovarian cancer cells in vitro. Anticancer Res 29(8):2933–2943

    CAS  PubMed  Google Scholar 

  60. Yang WJ, Cheng YY, Xu TW, Wang XY, Wen LP (2009) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44(2):862–868

    Article  CAS  PubMed  Google Scholar 

  61. Yellepeddi VK, Kumar A, Maher DM, Chauhan SC, Vangara KK, Palakurthi S (2011) Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. Anticancer Res 31(3):897–906

    CAS  PubMed  Google Scholar 

  62. Luo SH, Kansara VS, Zhu XD, Mandava NK, Pal D, Mitra AK (2006) Functional characterization of sodium-dependent multivitamin transporter in MDCK-MDR1 cells and its utilization as a target for drug delivery. Mol Pharm 3(3):329–339

    Google Scholar 

  63. Vadlapudi AD, Vadlapatla RK, Mitra AK (2012) Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery. Curr Drug Targets 13(7):994–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK (2006) Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res 31(10):797–809

    Article  CAS  PubMed  Google Scholar 

  65. Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113(3):1641–1666

    Article  CAS  PubMed  Google Scholar 

  66. Rabin O, Perez JM, Grimm J, Wojtkiewicz G, Weissleder R (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2):118–122

    Article  CAS  PubMed  Google Scholar 

  67. Kim D, Park SS, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665

    Article  CAS  PubMed  Google Scholar 

  68. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aviv H, Bartling S, Kieslling F, Margel S (2009) Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications. Biomaterials 30(29):5610–5616

    Article  CAS  PubMed  Google Scholar 

  70. de Vries A, Custers E, Lub J, van den Bosch S, Nicolay K, Grull H (2010) Block-copolymer-stabilized iodinated emulsions for use as CT contrast agents. Biomaterials 31(25):6537–6544

    Article  PubMed  CAS  Google Scholar 

  71. Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications – a review. Biomaterials 31(24):6249–6268

    Article  CAS  PubMed  Google Scholar 

  72. Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K (2010) X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 21(24):245104

    Article  PubMed  CAS  Google Scholar 

  73. Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barrett T, Ravizzini G, Choyke PL, Kobayashi H (2009) Dendrimers in medical nanotechnology application of dendrimer molecules in bioimaging and cancer treatment. IEEE Eng Med Biol 28(1):12–22

    Article  Google Scholar 

  75. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  CAS  PubMed  Google Scholar 

  76. Chien CC, Chen HH, Lai SF, Wu KC, Cai XQ, Hwu YK, Petibois C, Chu Y, Margaritondo G (2012) Gold nanoparticles as high-resolution X-ray imaging contrast agents for the analysis of tumor-related micro-vasculature. J Nanobiotechnol 10:10

    Article  CAS  Google Scholar 

  77. Wang H, Zheng LF, Guo R, Peng C, Shen MW, Shi XY, Zhang GX (2012) Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 7:190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Liu H, Wang H, Guo R, Cao XY, Zhao JL, Luo Y, Shen MW, Zhang GX, Shi XY (2010) Size-controlled synthesis of dendrimer-stabilized silver nanoparticles for X-ray computed tomography imaging applications. Polym Chem 1(10):1677–1683

    Article  CAS  Google Scholar 

  79. Wang H, Zheng LF, Peng C, Shen MW, Shi XY, Zhang GX (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adenocarcinoma. Biomaterials 34(2):470–480

    Article  CAS  PubMed  Google Scholar 

  80. Peng C, Qin JB, Zhou BQ, Chen Q, Shen MW, Zhu MF, Lu XW, Shi XY (2013) Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem 4(16):4412–4424

    Article  CAS  Google Scholar 

  81. Liu H, Wang H, Xu YH, Guo R, Wen SH, Huang YP, Liu WN, Shen MW, Zhao JL, Zhang GX, Shi XY (2014) Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted Computed Tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces 6(9):6944–6953

    Article  CAS  PubMed  Google Scholar 

  82. Cao YY, He Y, Liu H, Luo Y, Shen MW, Xia JD, Shi XY (2015) Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. J Mater Chem B 249:286–295

    Article  CAS  Google Scholar 

  83. Li ZM, Huang P, He R, Lin J, Yang S, Zhang XJ, Ren QS, Cui DX (2010) Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Mater Lett 64(3):375–378

    Article  CAS  Google Scholar 

  84. Li ZM, Huang P, Lin J, He R, Liu B, Zhang XM, Yang S, Xi P, Zhang XJ, Ren QS, Cui DX (2010) Arginine-Glycine-Aspartic acid-conjugated dendrimer-modified quantum dots for targeting and imaging melanoma. J Nanosci Nanotechnol 10(8):4859–4867

    Article  CAS  PubMed  Google Scholar 

  85. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110

    Article  CAS  PubMed  Google Scholar 

  86. Schiffmann R, Van der Knaap MS (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72(8):750–759

    Article  PubMed  PubMed Central  Google Scholar 

  87. Serres S, Soto MS, Hamilton A, McAteer MA, Carbonell W, Robson MD, Ansorge O, Khrapitchev A, Bristow C, Balathasan L (2012) Molecular MRI enables early and sensitive detection of brain metastases. Proc Natl Acad Sci U S A 109(17):6674–6679

    Google Scholar 

  88. Langereis S, Dirksen A, Hackeng TM, Van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. New J Chem 31(7):1152–1160

    Article  CAS  Google Scholar 

  89. Cai HD, An X, Cui J, Li JC, Wen SH, Li KA, Shen MW, Zheng LF, Zhang GX, Shi XY (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5(5):1722–1731

    Article  CAS  PubMed  Google Scholar 

  90. Alexiou C, Jurgons R, Seliger C, Iro H (2006) Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 6(9–10):2762–2768

    Article  CAS  PubMed  Google Scholar 

  91. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18(1):4–10

    Article  CAS  PubMed  Google Scholar 

  92. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148

    Article  CAS  Google Scholar 

  93. Mahajan S, Koul V, Choudhary V, Shishodia G, Bharti AC (2013) Preparation and in vitro evaluation of folate-receptor-targeted spion-polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology 24(1):015603

    Article  PubMed  CAS  Google Scholar 

  94. McMahon MT, Bulte JWM (2018) Two decades of dendrimers as versatile MRI agents: a tale with and without metals. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(3):e1496

    Article  PubMed  Google Scholar 

  95. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer-based metal-chelates – a new class of magnetic-resonance-imaging contrast agents. Magn Reson Med 31(1):1–8

    Article  CAS  PubMed  Google Scholar 

  96. Zhu J, Gale EM, Atanasova I, Rietz TA, Caravan P (2014) Hexameric Mn-II dendrimer as MRI contrast agent. Chem Eur J 20(44):14507–14513

    Article  CAS  PubMed  Google Scholar 

  97. Aime S, Caravan P (2009) Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J Magn Reson Imaging 30(6):1259–1267

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275(3):630–634

    Article  PubMed  Google Scholar 

  99. Xu RZ, Wang YL, Wang XL, Jeong EK, Parker DL, Lu ZR (2007) In vivo evaluation of a PAMAM-Cystamine-(Gd-DO3A) conjugate as a biodegradable macromolecular MRI contrast agent. Exp Biol Med 232(8):1081–1089

    Article  CAS  Google Scholar 

  100. Artemov D (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90(3):518–524

    Article  CAS  PubMed  Google Scholar 

  101. Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, Togashi K, Konishi J, Brechbiel MW (2000) Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 27(9):1334–1339

    Article  CAS  PubMed  Google Scholar 

  102. Xu H, Regino CA, Koyama Y, Hama Y, Gunn AJ, Bernardo M, Kobayashi H, Choyke PL, Brechbiel MW (2007) Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug Chem 18(5):1474–1482

    Google Scholar 

  103. Han L, Li JF, Huang SX, Huang RQ, Liu SH, Hu X, Yi PW, Shan D, Wang XX, Lei H (2011) Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent. Biomaterials 32(11):2989–2998

    Article  CAS  PubMed  Google Scholar 

  104. Tan MQ, Wu XM, Jeong EK, Chen QJ, Lu ZR (2010) Peptide-targeted nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging. Biomacromolecules 11(3):754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Swanson SD, Kukowska-Latallo JF, Patri AK, Chen CY, Ge S, Cao ZY, Kotlyar A, East AT, Baker JR (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomed 3(2):201–210

    Google Scholar 

  106. Wolfenden ML, Cloninger MJ (2005) Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions. J Am Chem Soc 127(35):12168–12169

    Article  CAS  PubMed  Google Scholar 

  107. van Baal I, Malda H, Synowsky SA, van Dongen JL, Hackeng TM, Merkx M, Meijer E (2005) Multivalent peptide and protein dendrimers using native chemical ligation. Angew Chem, Int Ed 44(32):5052–5057

    Google Scholar 

  108. Choi Y, Mecke A, Orr BG, Banaszak Holl MM, Baker JR (2004) DNA-directed synthesis of generation 7 and 5 PAMAM dendrimer nanoclusters. Nano Lett 4(3):391–397

    Article  CAS  Google Scholar 

  109. Antony AC (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820

    Article  CAS  PubMed  Google Scholar 

  110. Chen WT, Thirumala R, Shih TF, Chen RC, Tu SY, Lin CI, Yang PC (2010) Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol 12(2):145–154

    Article  PubMed  Google Scholar 

  111. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC (2001) Specific targeting of folate-dendrimer MRI contrast agents to the high affinity fo late receptor expressed in ovarian tumor xenografts. Magn Reson Mater Phys Biol Med 12(2–3):104–113

    Article  CAS  Google Scholar 

  112. Kobayashi H, Kawamoto S, Saga T, Sato N, Ishimori T, Konishi J, Ono K, Togashi K, Brechbiel MW (2001) Avidin-dendrimer-(1B4M-Gd) 254: a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjug Chem 12(4):587–593

    Google Scholar 

  113. Park J, Lee JJ, Jung JC, Yu DY, Oh C, Ha S, Kim TJ, Chang YM (2008) Gd-DOTA conjugate of RGD as a potential tumor-targeting MRI contrast agent. Chembiochem 9(17):2811–2813

    Article  CAS  PubMed  Google Scholar 

  114. Wang SH, Shi XY, Van Antwerp ME, Cao ZY, Swanson SD, Bi XD, Baker JR (2007) Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv Funct Mater 17(16):3043–3050

    Article  CAS  Google Scholar 

  115. Yang J, Luo Y, Xu YH, Li JC, Zhang ZX, Wang H, Shen MW, Shi XY, Zhang GX (2015) Conjugation of iron oxide nanoparticles with RGD-modified dendrimers for targeted tumor MR imaging. ACS Appl Mater Interfaces 7(9):5420–5428

    Article  CAS  PubMed  Google Scholar 

  116. Ghai A, Singh B, Hazari PP, Schultz MK, Parmar A, Kumar P, Sharma S, Dhawan D, Mishra AK (2015) Radiolabeling optimization and characterization of Ga-68 labeled DOTA-polyamido-amine dendrimer conjugate – animal biodistribution and PET imaging results. Appl Radiat Isot 105:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, Ferrara KW (2014) Cu-64-labeled LyP-1-Dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25(2):231–239

    Google Scholar 

  118. Ma WH, Fu FF, Zhu JY, Huang R, Zhu YZ, Liu ZW, Wang J, Conti PS, Shi XY, Chen K (2018) Cu-64-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale 10(13):6113–6124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen H, Viel S, Ziarelli F, Peng L (2013) F-19 NMR: a valuable tool for studying biological events. Chem Soc Rev 42(20):7971–7982

    Article  CAS  PubMed  Google Scholar 

  120. Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G (2015) F-19 magnetic resonance imaging (MRI): from Design of Materials to clinical applications. Chem Rev 115(2):1106–1129

    Article  CAS  PubMed  Google Scholar 

  121. Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X (2015) Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dug-modal imaging of tumors. Anal Chem 87(7):3949–3956

    Article  CAS  PubMed  Google Scholar 

  122. Wang RZ, Luo Y, Yang SH, Lin J, Gao DM, Zhao Y, Liu JG, Shi XY, Wang XL (2016) Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma. Sci Rep 6:33844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cai HD, Li KG, Li JC, Wen SH, Chen Q, Shen MW, Zheng LF, Zhang GX, Shi XY (2015) Dendrimer-assisted formation of Fe3O4/Au nanocomposite particles for targeted dual mode CT/MR imaging of tumors. Small 11(35):4584–4593

    Article  CAS  PubMed  Google Scholar 

  124. Yang H, Qin C, Yu C, Lu Y, Zhang H, Xue F, Wu D, Zhou Z, Yang S (2014) RGD-conjugated nanoscale coordination polymers for targeted T-1- and T-2-weighted magnetic resonance imaging of tumors in vivo. Adv Funct Mater 24(12):1738–1747

    Article  CAS  Google Scholar 

  125. Haribabu V, Farook AS, Goswami N, Murugesan R, Girigoswami A (2016) Optimized Mn-doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. J Biomed Mater Res Part B Appl Biomater 104(4):817–824

    Article  CAS  Google Scholar 

  126. Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D (2007) Preparation and characterization of manganese ferrite-based magnetic liposomes for hyperthermia treatment of cancer. J Magn Magn Mater 311(1):208–215

    Article  CAS  Google Scholar 

  127. Tang ZX, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1991) Preparation of manganese ferrite fine particles from aqueous-solution. J Colloid Interface Sci 146(1):38–52

    Article  CAS  Google Scholar 

  128. Qiao Z, Shi XY (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27

    Article  CAS  Google Scholar 

  129. Luo Y, Zhao L, Li X, Yang J, Guo L, Zhang G, Shen M, Zhao J, Shi X (2016) The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J Mater Chem B 4(45):7220–7225

    Article  CAS  PubMed  Google Scholar 

  130. Li X, Xiong ZG, Xu XY, Luo Y, Peng C, Shen MW, Shi XY (2016) Tc-99m-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT Dual-Mode imaging of tumors. ACS Appl Mater Interfaces 8(31):19883–19891

    Article  CAS  PubMed  Google Scholar 

  131. Wen SH, Zhao LZ, Zhao QH, Li D, Liu CC, Yu ZB, Shen MW, Majoral JP, Mignani S, Zhao JH, Shi XY (2017) A promising dual mode SPECT/CT imaging platform based on Tc-99m-labeled multifunctional dendrimer-entrapped gold nanoparticles. J Mater Chem B 5(21):3810–3815

    Article  CAS  PubMed  Google Scholar 

  132. Xu XY, Zhao LZ, Li X, Wang P, Zhao JH, Shi XY, Shen MW (2017) Targeted tumor SPECT/CT dual mode imaging using multifunctional RGD-modified low generation dendrimer-entrapped gold nanoparticles. Biomater Sci 5(12):2393–2397

    Article  CAS  PubMed  Google Scholar 

  133. Chen JW, Sun YQ, Chen Q, Wang L, Wang SH, Tang YQ, Shi XY, Wang H (2016) Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells. Nanoscale 8(28):13568–13573

    Article  CAS  PubMed  Google Scholar 

  134. Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61(7):3027–3032

    CAS  PubMed  Google Scholar 

  135. Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60(16):4440–4445

    CAS  PubMed  Google Scholar 

  136. Culver KW (1994) Clinical-applications of gene-therapy for cancer. Clin Chem 40(4):510–512

    Article  CAS  PubMed  Google Scholar 

  137. Rosenberg SA (1992) The immunotherapy and gene-therapy of cancer. J Clin Oncol 10(2):180–199

    Article  CAS  PubMed  Google Scholar 

  138. Xiao TY, Hou WX, Cao XY, Wen SH, Shen MW, Shi XY (2013) Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. Biomater Sci 1(11):1172–1180

    Article  CAS  PubMed  Google Scholar 

  139. Kong LD, Wu YL, Alves CS, Shi XY (2016) Efficient delivery of therapeutic siRNA into glioblastoma cells using multifunctional dendrimer-entrapped gold nanoparticles. Nanomedicine 11(23):3103–3115

    Google Scholar 

  140. Kong LD, Alves CS, Hou WX, Qiu JR, Moehwald H, Tomas H, Shi XY (2015) RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl Mater Interfaces 7(8):4833–4843

    Article  CAS  PubMed  Google Scholar 

  141. Wang YJ, Bansal V, Zelikin AN, Caruso F (2008) Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano Lett 8(6):1741–1745

    Article  PubMed  CAS  Google Scholar 

  142. Wang Y, Cao XY, Guo R, Shen MW, Zhang ME, Zhu MF, Shi XY (2011) Targeted delivery of doxorubicin into cancer cells using a folic acid-dendrimer conjugate. Polym Chem 2(8):1754–1760

    Article  CAS  Google Scholar 

  143. Wang Y, Guo R, Cao XY, Shen MW, Shi XY (2011) Encapsulation of 2-methoxyestradiol within multifunctional poly(amidoamine) dendrimers for targeted cancer therapy. Biomaterials 32(12):3322–3329

    Article  CAS  PubMed  Google Scholar 

  144. Zhang ME, Guo R, Wang Y, Cao XY, Shen MW, Shi XY (2011) Multifunctional dendrimer/combretastatin A4 inclusion complexes enable in vitro targeted cancer therapy. Int J Nanomed 6:2337–2349

    Google Scholar 

  145. Fu FF, Wu YL, Zhu JY, Wen SH, Shen MW, Shi XY (2014) Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by peg spacer. ACS Appl Mater Interfaces 6(18):16416–16425

    Article  CAS  PubMed  Google Scholar 

  146. He H, Li Y, Jia XR, Du J, Ying X, Lu WL, Lou JN, Wei Y (2011) PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 32(2):478–487

    Article  CAS  PubMed  Google Scholar 

  147. Zhang ME, Zhu JY, Zheng Y, Guo R, Wang SG, Mignani S, Caminade AM, Majoral JP, Shi XY (2018) Doxorubicin-conjugated PAMAM dendrimers for ph-responsive drug release and folic acid-targeted cancer therapy. Pharmaceutics 10(3):162

    Article  CAS  PubMed Central  Google Scholar 

  148. Zheng Y, Fu FF, Zhang MG, Shen MW, Zhu MF, Shi XY (2014) Multifunctional dendrimers modified with alpha-tocopheryl succinate for targeted cancer therapy. MedChemComm 5(7):879–885

    Article  CAS  Google Scholar 

  149. Zhu JY, Zheng LF, Wen SH, Tang YQ, Shen MW, Zhang GX, Shi XY (2014) Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 35(26):7635–7646

    Article  CAS  PubMed  Google Scholar 

  150. Zheng L, Zhu J, Shen M, Chen X, Baker JR Jr, Wang SH, Zhang G, Shi X (2013) Targeted cancer cell inhibition using multifunctional dendrimer-entrapped gold nanoparticles. MedChemComm 4(6):1001–1005

    Article  CAS  Google Scholar 

  151. Zhu JY, Wang GY, Alves CS, Tomas H, Long ZJ, Shen MW, Rodrigues J, Shi XY (2018) Multifunctional dendrimer-entrapped gold nanoparticles conjugated with doxorubicin for ph-responsive drug delivery and targeted computed tomography imaging. Langmuir 34(41):12428–12435

    Article  CAS  PubMed  Google Scholar 

  152. Zhu J, Xiong Z, Shen M, Shi X (2015) Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells. RSC Adv 5(38):30286–30296

    Article  CAS  Google Scholar 

  153. Wang Q, Li J, An S, Chen Y, Jiang C, Wang X (2015) Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer. Int J Nanomed 10:4479–4490

    Google Scholar 

  154. Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X (2015) Radionuclide I-131-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 7(43):18169–18178

    Article  CAS  PubMed  Google Scholar 

  155. Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J (2015) Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide I-131 for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7(35):19798–19808

    Article  CAS  PubMed  Google Scholar 

  156. Cheng YJ, Zhu JY, Zhao LZ, Xiong ZJ, Tang YQ, Liu CC, Guo LL, Qiao WL, Shi XY, Zhao JH (2016) I-131-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine 11(10):1253–1266

    Article  CAS  PubMed  Google Scholar 

  157. Fan Y, Zhang JL, Shi MH, Li D, Lu CH, Cao XY, Peng C, Mignani SG, Majoral JP, Shi XY (2019) Poly(amidoamine) dendrimer-coordinated copper(ii) complexes as a theranostic nanoplatform for the radiotherapy-enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis. Nano Lett 19(2):1216–1226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Shanghai Leading Talents Program, National Natural Science Foundation of China (21773026 and 81761148028), the Science and Technology Commission of Shanghai Municipality (17540712000, 19XD1400100, 19410740200 and 18520750400), and the 111 project (BP0719035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouyang, Z., Li, D., Shen, M., Shi, X. (2020). Dendrimer-Based Tumor-targeted Systems. In: Huang, R., Wang, Y. (eds) New Nanomaterials and Techniques for Tumor-targeted Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-5159-8_10

Download citation

Publish with us

Policies and ethics