Skip to main content

Abstract

Recent advances in synthetic chemistry has led to the increasingly sophisticated design and preparation of biofunctional polymeric surfaces and materials. In this regard, synthetic poly-(N-substituted glycine) “peptoids” which mimic the structure and function of peptides play an important role, since they may attain functionalities similar to natural biopolymers. This chapter reviews efforts by our group and others to develop “antifouling” peptoid coatings that resist the nonspecific and undesired adsorption of proteins and attachment of mammalian and microbial cells. We have found that the simplest peptoid—polysarcosine—has been found to be well hydrated and therefore well-suited for antifouling applications. We show that the synthetic convenience of peptoids in general greatly facilitates studies on how polymer chain length, chain density, sidechain chemistry, and specific peptoid sequences may control surface interactions. Indeed, specific peptoids and sequence arrangements have been found to exhibit long-term antifouling properties and excellent resistance against different strains of bacteria. Addition of simple sugar groups to peptoid chains may further enhance resistance against bacterial attachment. Combined with peptoid’s resistance against enzymatic degradation, antifouling peptoids have excellent potential in biomedical applications. These range from coatings of catheters and other biological devices to biosensing and nanomedicine that require a non-fouling interface to achieve improved device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballard D, Bamford C (1956) Reactions of N-carboxy-α-amino-acid anhydrides catalysed by tertiary bases. J Chem Soc (Resumed) 9:381–387

    Article  Google Scholar 

  • Chapman RG, Ostuni E, Takayama S, Holmlin RE, Yan L, Whitesides GM (2000) Surveying for surfaces that resist the adsorption of proteins. J Am Chem Soc 122:8303–8304

    Article  CAS  Google Scholar 

  • Cheung DL, Lau KHA (2019) Atomistic study of zwitterionic peptoid antifouling brushes. Langmuir 35:1483–1494

    Article  CAS  PubMed  Google Scholar 

  • Cioffi CL, Liu S, Wolf MA (2010) Chapter 2—recent developments in glycine transporter-1 inhibitors. Annual reports in medicinal chemistry. J E Macor, Academic Press 45:19–35

    CAS  Google Scholar 

  • Corson AE, Armstrong SA, Wright ME, McClelland EE, Bicker KL (2016) Discovery and characterization of a peptoid with antifungal activity against Cryptococcus neoformans. ACS Med Chem Lett 7:1139–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culf AS (2019) Peptoids as tools and sensors. Biopolymers 110:e23285

    Article  PubMed  CAS  Google Scholar 

  • Culf AS, Ouellette RJ (2010) Solid-phase synthesis of N-substituted glycine oligomers (α-peptoids) and derivatives. Molecules 15:5282–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interf Sci 27:189–209

    Article  Google Scholar 

  • Eggimann GA, Bolt HL, Denny PW, Cobb SL (2015) Investigating the anti-leishmanial effects of linear peptoids. ChemMedChem 10:233–237

    Article  CAS  PubMed  Google Scholar 

  • Fetsch C, Luxenhofer R (2012) Highly defined multiblock copolypeptoids: pushing the limits of living nucleophilic ring-opening polymerization. Macromol Rapid Commun 33:1708–1713

    Article  CAS  PubMed  Google Scholar 

  • Fetsch C, Grossmann A, Holz L, Nawroth JF, Luxenhofer R (2011) Polypeptoids from N-substituted glycine N-carboxyanhydrides: hydrophilic, hydrophobic, and amphiphilic polymers with poisson distribution. Macromolecules 44:6746–6758

    Article  CAS  Google Scholar 

  • Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R (2016) Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem Rev 116:1753–1802

    Article  CAS  PubMed  Google Scholar 

  • Goodman M, Fried M (1967) Conformational aspects of polypeptide structure. XX. Helical poly-N-methyl-L-alanine. Experimental results. J Am Chem Soc 89:1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Goodman M, Chen F, Prince FR (1973) Conformational aspect of polypeptide structure. XLIV. Conformational transitions of poly (N-methyl-alanines) induced by trifluoroacetic acid. Biopolymers 12:2549–2561

    Article  CAS  Google Scholar 

  • Gorske BC, Jewell SA, Guerard EJ, Blackwell HE (2005) Expedient synthesis and design strategies for new peptoid construction. Org Lett 7:1521–1524

    Article  CAS  PubMed  Google Scholar 

  • Habraken GJ, Wilsens KH, Koning CE, Heise A (2011) Optimization of N-carboxyanhydride (NCA) polymerization by variation of reaction temperature and pressure. Polym Chem 2:1322–1330

    Article  CAS  Google Scholar 

  • Halperin A (1999) Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir 15:2525–2533

    Article  CAS  Google Scholar 

  • Ham HO, Park SH, Kurutz JW, Szleifer IG, Messersmith PB (2013) Antifouling glycocalyx-mimetic peptoids. J Am Chem Soc 135:13015–13022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan A, Waibhaw G, Saxena V, Pandey LM (2018) Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 111:923–934

    Article  CAS  PubMed  Google Scholar 

  • Hong D, Hung H-C, Wu K, Lin X, Sun F, Zhang P, Liu S, Cook KE, Jiang S (2017) Achieving ultralow fouling under ambient conditions via surface-initiated arget atrp of carboxybetaine. ACS Appl Mater Interfaces 9:9255–9259

    Article  CAS  PubMed  Google Scholar 

  • Hoogenboom R, Schlaad H (2017) Thermoresponsive poly (2-oxazoline) s, polypeptoids, and polypeptides. Polym Chem 8:24–40

    Article  CAS  Google Scholar 

  • Hörtz C, Birke A, Kaps L, Decker S, Wächtersbach E, Fischer K, Schuppan D, Barz M, Schmidt M (2015) Cylindrical brush polymers with polysarcosine side chains: a novel biocompatible carrier for biomedical applications. Macromolecules 48:2074–2086

    Article  CAS  Google Scholar 

  • Huesmann D, Sevenich A, Weber B, Barz M (2015) A head-to-head comparison of poly(sarcosine) and poly(ethylene glycol) in peptidic, amphiphilic block copolymers. Polymer 67:240–248

    Article  CAS  Google Scholar 

  • Jin H, Jian T, Ding Y-H, Chen Y, Mu P, Wang L, Chen C-L (2019) Solid-phase synthesis of three-armed star-shaped peptoids and their hierarchical self-assembly. Biopolymers 110:e23258

    Article  PubMed  CAS  Google Scholar 

  • Kidchob T, Kimura S, Imanishi Y (1998) Amphiphilic poly(Ala)-b-poly(Sar) microspheres loaded with hydrophobic drug. J Control Release 51:241–248

    Article  CAS  PubMed  Google Scholar 

  • Knight AS, Zhou EY, Francis MB, Zuckermann RN (2015) Sequence programmable peptoid polymers for diverse materials applications. Adv Mater 27:5665–5691

    Article  CAS  PubMed  Google Scholar 

  • Kruijtzer JA, Liskamp RM (1995) Synthesis in solution of peptoids using Fmoc-protected N-substituted glycines. Tetrahedron Lett 36:6969–6972

    Article  CAS  Google Scholar 

  • Lahasky SH, Serem WK, Guo L, Garno JC, Zhang D (2011) Synthesis and characterization of cyclic brush-like polymers by N-heterocyclic carbene-mediated zwitterionic polymerization of N-propargyl N-carboxyanhydride and the grafting-to approach. Macromolecules 44:9063–9074

    Article  CAS  Google Scholar 

  • Lambermont-Thijs HML, Hoogenboom R, Fustin C-A, Bomal-D’Haese C, Gohy J-F, Schubert US (2009) Solubility behavior of amphiphilic block and random copolymers based on 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline in binary water–ethanol mixtures. J Polym Sci A Polym Chem 47:515–522

    Article  CAS  Google Scholar 

  • Lau KHA (2014) Peptoids for biomaterials science. Biomaterials Science 2:627–633

    Article  CAS  PubMed  Google Scholar 

  • Lau KA, Ren C, Park SH, Szleifer I, Messersmith PB (2011) An experimental–theoretical analysis of protein adsorption on peptidomimetic polymer brushes. Langmuir 28:2288–2298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau KHA, Ren C, Park SH, Szleifer I, Messersmith PB (2012a) An experimental–theoretical analysis of protein adsorption on peptidomimetic polymer brushes. Langmuir 28:2288–2298

    Article  CAS  PubMed  Google Scholar 

  • Lau KHA, Ren C, Sileika TS, Park SH, Szleifer I, Messersmith PB (2012b) Surface-grafted polysarcosine as a peptoid antifouling polymer brush. Langmuir 28:16099–16107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau KHA, Sileika TS, Park SH, Sousa AM, Burch P, Szleifer I, Messersmith PB (2015) Molecular design of antifouling polymer brushes using sequence-specific peptoids. Adv Mater Interfaces 2:1400225

    Article  PubMed  CAS  Google Scholar 

  • Leng C, Buss HG, Segalman RA, Chen Z (2015a) Surface structure and hydration of sequence-specific amphiphilic polypeptoids for antifouling/fouling release applications. Langmuir 31:9306–9311

    Article  CAS  PubMed  Google Scholar 

  • Leng C, Hung H-C, Sieggreen OA, Li Y, Jiang S, Chen Z (2015b) Probing the surface hydration of nonfouling zwitterionic and poly (ethylene glycol) materials with isotopic dilution spectroscopy. J Phys Chem C 119:8775–8780

    Article  CAS  Google Scholar 

  • Leng C, Huang H, Zhang K, Hung H-C, Xu Y, Li Y, Jiang S, Chen Z (2018) Effect of surface hydration on antifouling properties of mixed charged polymers. Langmuir 34:6538–6545

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Zhang B, Skoumal MJ, Ramunno B, Li X, Wesdemiotis C, Liu L, Jia L (2011) Antifouling Poly(β-peptoid)s. Biomacromolecules 12:2573–2582

    Article  CAS  PubMed  Google Scholar 

  • Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R (2018) Poly (2-oxazoline) s based biomaterials: a comprehensive and critical update. Biomaterials 178:204–280

    Article  CAS  PubMed  Google Scholar 

  • Luxenhofer R, Fetsch C, Grossmann A (2013) Polypeptoids: a perfect match for molecular definition and macromolecular engineering? J Polym Sci A Polym Chem 51:2731–2752

    Article  CAS  Google Scholar 

  • Molchanova N, Hansen PR, Franzyk H (2017) Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 22:1430

    Article  PubMed Central  CAS  Google Scholar 

  • Molchanova N, Wang H, Hansen PR, Høiby N, Nielsen HM, Franzyk H (2019) Antimicrobial activity of α-peptide/β-peptoid lysine-based peptidomimetics against colistin-resistant pseudomonas aeruginosa isolated from cystic fibrosis patients. Front Microbiol 10:275

    Article  PubMed  PubMed Central  Google Scholar 

  • Murnen HK, Khokhlov AR, Khalatur PG, Segalman RA, Zuckermann RN (2012) Impact of hydrophobic sequence patterning on the coil-to-globule transition of protein-like polymers. Macromolecules 45:5229–5236

    Article  CAS  Google Scholar 

  • Olivos HJ, Alluri PG, Reddy MM, Salony D, Kodadek T (2002) Microwave-assisted solid-phase synthesis of peptoids. Org Lett 4:4057–4059

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Baer MD, Mundy CJ, Pfaendtner J (2018) Peptoid backbone flexibilility dictates its interaction with water and surfaces: a molecular dynamics investigation. Biomacromolecules 19:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Prime K, Whitesides G (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167

    Article  CAS  PubMed  Google Scholar 

  • Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide)—a model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721

    Article  CAS  Google Scholar 

  • Raynor JE, Capadona JR, Collard DM, Petrie TA, García AJ (2009) Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials (review). Biointerphases 4:FA3–FA16

    Article  CAS  PubMed  Google Scholar 

  • Ryge TS, Hansen PR (2005) Novel lysine-peptoid hybrids with antibacterial properties. J Pept Sci: Offi Pub Eur Pept Soc 11:727–734

    Article  CAS  Google Scholar 

  • Ryu JY, Song IT, Lau KA, Messersmith PB, Yoon T-Y, Lee H (2014) New antifouling platform characterized by single-molecule imaging. ACS Appl Mater Interfaces 6:3553–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena V, Hasan A, Sharma S, Pandey LM (2018) Edible oil nanoemulsion: an organic nanoantibiotic as a potential biomolecule delivery vehicle. Int J Polym Mater Polym Biomater 67:410–419

    Article  CAS  Google Scholar 

  • Serrano Â, Sterner O, Mieszkin S, Zürcher S, Tosatti S, Callow ME, Callow JA, Spencer ND (2013) Nonfouling response of hydrophilic uncharged polymers. Adv Funct Mater 23:5706–5718

    Article  CAS  Google Scholar 

  • Sisido M, Imanishi Y, Higashimura T (1977) Molecular weight distribution of polysarcosine obtained by NCA polymerization. Die Makromolekulare Chemie: Macromol Chem Phy 178:3107–3114

    Article  CAS  Google Scholar 

  • Smith-Palmer T (2019) Clinical analysis | sarcosine, creatine, and creatinine. In: Worsfold P, Poole C, Townshend A, Miró M (eds) Encyclopedia of analytical science, 3rd edn. Academic Press, Oxford, pp 163–172

    Google Scholar 

  • Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973

    Article  CAS  PubMed  Google Scholar 

  • Statz AR, Barron AE, Messersmith PB (2008a) Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter 4:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Statz AR, Park JP, Chongsiriwatana NP, Barron AE, Messersmith PB (2008b) Surface-immobilised antimicrobial peptoids. Biofouling 24:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Statz AR, Kuang J, Ren C, Barron AE, Szleifer I, Messersmith PB (2009) Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases 4:FA22–FA32

    Article  CAS  PubMed  Google Scholar 

  • Szleifer I (1997a) Polymers and proteins: interactions at interfaces. Curr Opinion Solid State Mater Sci 2:337–344

    Article  CAS  Google Scholar 

  • Szleifer I (1997b) Protein adsorption on surfaces with grafted polymers: a theoretical approach. Biophys J 72:595–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Deng C, Ling J (2014) PEG-amine-initiated polymerization of sarcosine n-thiocarboxyanhydrides toward novel double-hydrophilic peg-b-polysarcosine diblock copolymers. Macromol Rapid Commun 35:875–881

    Article  CAS  PubMed  Google Scholar 

  • Tao X, Zheng B, Bai T, Zhu B, Ling J (2017a) Hydroxyl group tolerated polymerization of N-substituted glycine N-thiocarboxyanhydride mediated by aminoalcohols: a simple way to α-Hydroxyl-ω-aminotelechelic polypeptoids. Macromolecules 50:3066–3077

    Article  CAS  Google Scholar 

  • Tao X, Zheng B, Kricheldorf HR, Ling J (2017b) Are N-substituted glycine N-thiocarboxyanhydride monomers really hard to polymerize? J Polym Sci A Polym Chem 55:404–410

    Article  CAS  Google Scholar 

  • Tao X, Li M-H, Ling J (2018) α-Amino acid N-thiocarboxyanhydrides: a novel synthetic approach toward poly(α-amino acid)s. Eur Polym J 109:26–42

    Article  CAS  Google Scholar 

  • Toda M, Arima Y, Iwata H (2010) Complement activation on degraded polyethylene glycol-covered surface. Acta Biomater 6:2642–2649

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, McDermott G, Wetzler M, Le Gros MA, Myllys M, Knoechel C, Barron AE, Larabell CA (2009) Soft X-ray tomography of phenotypic switching and the cellular response to antifungal peptoids in Candida albicans. Proc Natl Acad Sci 106:19375–19380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unsworth LD, Sheardown H, Brash JL (2005) Polyethylene oxide surfaces of variable chain density by chemisorption of PEO-thiol on gold: adsorption of proteins from plasma studied by radiolabelling and immunoblotting. Biomaterials 26:5927–5933

    Article  CAS  PubMed  Google Scholar 

  • van Zoelen W, Zuckermann RN, Segalman RA (2012) Tunable surface properties from sequence-specific polypeptoid–polystyrene block copolymer thin films. Macromolecules 45:7072–7082

    Article  CAS  Google Scholar 

  • van Zoelen W, Buss HG, Ellebracht NC, Lynd NA, Fischer DA, Finlay J, Hill S, Callow ME, Callow JA, Kramer EJ, Zuckermann RN, Segalman RA (2014) Sequence of hydrophobic and hydrophilic residues in amphiphilic polymer coatings affects surface structure and marine antifouling/fouling release properties. ACS Macro Lett 3:364–368

    Article  CAS  Google Scholar 

  • Vedel L, Bonke G, Foged C, Ziegler H, Franzyk H, Jaroszewski JW, Olsen CA (2007) Antiplasmodial and prehemolytic activities of α-peptide–β-peptoid chimeras. ChemBioChem 8:1781–1784

    Article  CAS  PubMed  Google Scholar 

  • Vroman L (1962) Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196:476–477

    Article  CAS  PubMed  Google Scholar 

  • Wiesbrock F, Hoogenboom R, Leenen M, van Nispen SFGM, van der Loop M, Abeln CH, van den Berg AMJ, Schubert US (2005) Microwave-assisted synthesis of a 42-membered library of diblock copoly(2-oxazoline)s and chain-extended homo poly(2-oxazoline)s and their thermal characterization. Macromolecules 38:7957–7966

    Article  CAS  Google Scholar 

  • Yang W, Xue H, Li W, Zhang J, Jiang S (2009) Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir 25:11911–11916

    Article  CAS  PubMed  Google Scholar 

  • Yu HM, Chen ST, Wang KT (1992) Enhanced coupling efficiency in solid-phase peptide synthesis by microwave irradiation. J Organ Chem 57:4781–4784

    Article  CAS  Google Scholar 

  • Zhu H, Chen Y, Yan F-J, Chen J, Tao X-F, Ling J, Yang B, He Q-J, Mao Z-W (2017) Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater 50:534–545

    Article  CAS  PubMed  Google Scholar 

  • Zuckermann RN (2011) Peptoid origins. Pept Sci 96:545–555

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VS thanks the Commonwealth Scholarship Commission for a Split Site award (INCN-2018-129). The work of MM and KHAL were supported by a young investigator grant from the Human Frontier Science Program (RGY0074/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King Hang Aaron Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saxena, V., Merrilees, M.G.L., Lau, K.H.A. (2020). Antifouling Peptoid Biointerfaces. In: Chandra, P., Pandey, L. (eds) Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery . Springer, Singapore. https://doi.org/10.1007/978-981-15-4790-4_3

Download citation

Publish with us

Policies and ethics