Skip to main content

Massive Black-Hole Mergers

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

At low redshift, massive black holes are found in the centers of almost all large elliptical galaxies, and also in many lower-mass systems. Their evolution is believed to be inextricably entangled with that of their host galaxies. On the one hand, the galactic environment provides gas for the black holes to grow via accretion and shine as active galactic nuclei. On the other hand, massive black holes are expected to backreact on the galactic dynamics, by injecting energy in their surroundings via jets or radiative feedback. Moreover, if galaxies and dark-matter halos form hierarchically, from small systems at high redshift coalescing into larger ones at more recent epochs, massive black holes may also merge, potentially generating gravitational-wave signals detectable by present and future experiments. In this chapter, we discuss the predictions of current astrophysical models for the mergers of massive black holes in the mHz frequency band of the Laser Interferometer Space Antenna (LISA) and in the nHz frequency band of pulsar-timing array experiments. We focus in particular on the astrophysical uncertainties affecting these predictions, including the poorly known dynamical evolution of massive black-hole pairs at separations of hundreds of parsecs, the possible formation of “stalled” binaries at parsec separations (“final-parsec problem”), and the effect of baryonic physics (e.g., SN feedback) on the growth of massive black holes. We show that nHz-band predictions are much more robust than in the mHz band and comment on the implications of this fact for LISA and pulsar-timing arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Antonini F, Barausse E, Silk J (2015) The coevolution of nuclear star clusters, massive black holes, and their host galaxies. Astrophys J 812:72

    Article  ADS  Google Scholar 

  2. Antonini F, Barausse E, Silk J (2015) The imprint of massive black hole mergers on the correlation between nuclear star clusters and their host galaxies. Astrophys J Lett 806:L8

    Article  ADS  Google Scholar 

  3. Arzoumanian Z, Baker PT, Brazier A, Burke- Spolaor S, Chamberlin SJ, Chatterjee S, Christy B, Cordes JM, Cornish NJ, Crawford F, Thankful Cromartie H, Crowter K, DeCesar M, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara E, Folkner WM, Fonseca E, Garver-Daniels N, Gentile PA, Haas R, Hazboun JS, Huerta EA, Islo K, Jones G, Jones ML, Kaplan DL, Kaspi VM, Lam MT, Lazio TJW, Levin L, Lommen AN, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, McWilliams ST, Mingarelli CMF, Ng C, Nice DJ, Park RS, Pennucci TT, Pol NS, Ransom SM, Ray PS, Rasskazov A, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum J, Taylor SR, Vallisneri M, van Haasteren R, Vigeland S, Zhu WW, NANOGrav Collaboration (2018) The NANOGrav 11 year data set: pulsar-timing constraints on the stochastic gravitational-wave background. Astrophys J 859:47

    Google Scholar 

  4. Arzoumanian Z, Baker PT, Blumer H, Becsy B, Brazier A, Brook PR, Burke-Spolaor S, Chatterjee S, Chen S, Cordes JM, Cornish NJ, Crawford F, Cromartie HT, DeCesar ME, Demorest PB, Dolch T, Ellis JA, Ferrara EC, Fiore W, Fonseca E, Garver-Daniels N, Gentile PA, Good DC, Hazboun JS, Holgado AM, Islo K, Jennings RJ, Jones ML, Kaiser AR, Kaplan DL, Kelley LZ, Key JS, Laal N, Lam MT, Lazio TJW, Lorimer DR, Luo J, Lynch RS, Madison DR, McLaughlin MA, Mingarelli CMF, Ng C, Nice DJ, Pennucci TT, Pol NS, Ransom SM, Ray PS, Shapiro-Albert BJ, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Sun JP, Swiggum JK, Taylor SR, Turner JE, Vallisneri M, Vigeland SJ, Witt CA (2020) The nanograv 12.5-year data set: search for an isotropic stochastic gravitational-wave background. in press

    Google Scholar 

  5. Baldassare VF, Geha M, Greene J (2019) A search for optical AGN variability in 35,000 low-mass galaxies with the Palomar Transient Factory. arXiv e-prints arXiv:1910.06342

    Google Scholar 

  6. Bañados E, Carilli C, Walter F, Momjian E, Decarli R, Farina EP, Mazzucchelli C, Venemans BP (2018) A powerful radio-loud quasar at the end of cosmic reionization. Astrophys J 861(2):L14

    Article  ADS  Google Scholar 

  7. Barausse E (2012) The evolution of massive black holes and their spins in their galactic hosts. Mon Not R Astron Soc 423:2533–2557

    Article  ADS  Google Scholar 

  8. Barausse E, Shankar F, Bernardi M, Dubois Y, Sheth RK (2017) Selection bias in dynamically measured supermassive black hole samples: scaling relations and correlations between residuals in semi-analytic galaxy formation models. Mon Not R Astron Soc 468:4782–4791

    Article  ADS  Google Scholar 

  9. Barausse E, Dvorkin I, Tremmel M, Volonteri M, Bonetti M (2020) Massive black hole merger rates: the effect of kpc separation wandering and supernova feedback. arXiv e-prints arXiv:2006.03065

    Google Scholar 

  10. Bardeen JM, Bond JR, Kaiser N, Szalay AS (1986) The statistics of peaks of Gaussian random fields. Astrophys J 304:15

    Article  ADS  Google Scholar 

  11. Begelman MC, Blandford RD, Rees MJ (1980) Massive black hole binaries in active galactic nuclei. Nature 287:307–309

    Article  ADS  Google Scholar 

  12. Begelman MC, Rossi EM, Armitage PJ (2008) Quasi-stars: accreting black holes inside massive envelopes. Mon Not R Astron Soc 387(4):1649–1659

    Article  ADS  Google Scholar 

  13. Behroozi PS, Wechsler RH, Conroy C (2013) The average star formation histories of galaxies in dark matter halos from z = 0-8. Astrophys J 770(1):57

    Google Scholar 

  14. Bekki K, Graham AW (2010) On the transition from nuclear-cluster- to black-hole-dominated galaxy cores. ApJL 714(2):L313–L317

    Article  ADS  Google Scholar 

  15. Bhattacharya S, Heitmann K, White M, Lukić Z, Wagner C, Habib S (2011) Mass function predictions beyond ΛCDM. Astrophys J 732(2):122

    Article  ADS  Google Scholar 

  16. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion disks and the production of radio jets. Mon Not R Astron Soc 199:883–903

    Article  ADS  MATH  Google Scholar 

  17. Blandford RD, Znajek RL (1977) Electromagnetic extraction of energy from Kerr black holes. Mon Not R Astron Soc 179:433–456

    Article  ADS  Google Scholar 

  18. Boco L, Lapi A, Danese L (2020) Growth of supermassive black hole seeds in ETG star-forming progenitors: multiple merging of stellar compact remnants via gaseous dynamical friction and gravitational-wave emission. Astrophys J 891(1):94

    Article  ADS  Google Scholar 

  19. Bond JR, Cole S, Efstathiou G, Kaiser N (1991) Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys J 379:440

    Article  ADS  Google Scholar 

  20. Bonetti M, Haardt F, Sesana A, Barausse E (2016) Post-Newtonian evolution of massive black hole triplets in galactic nuclei – I. Numerical implementation and tests. Mon Not R Astron Soc 461:4419–4434

    Article  ADS  Google Scholar 

  21. Bonetti M, Haardt F, Sesana A, Barausse E (2018) Post-Newtonian evolution of massive black hole triplets in galactic nuclei – II. Survey of the parameter space. Mon Not R Astron Soc 477:3910–3926

    Article  ADS  Google Scholar 

  22. Bonetti M, Sesana A, Barausse E, Haardt F (2018) Post-Newtonian evolution of massive black hole triplets in galactic nuclei – III. A robust lower limit to the nHz stochastic background of gravitational waves. Mon Not R Astron Soc 477:2599–2612

    Article  ADS  Google Scholar 

  23. Bonetti M, Sesana A, Haardt F, Barausse E, Colpi M (2019) Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA. Mon Not R Astron Soc 486(3):4044–4060

    Article  ADS  Google Scholar 

  24. Bower RG, Benson AJ, Malbon R, Helly JC, Frenk CS, Baugh CM, Cole S, Lacey CG (2006) Breaking the hierarchy of galaxy formation. Mon Not R Astron Soc 370(2):645–655

    Article  ADS  Google Scholar 

  25. Boylan-Kolchin M, Ma CP, Quataert E (2008) Dynamical friction and galaxy merging time-scales. Mon Not R Astron Soc 383:93–101

    Article  ADS  Google Scholar 

  26. Bryan GL, Norman ML (1998) Statistical properties of X-ray clusters: analytic and numerical comparisons. Astrophys J 495(1):80–99

    Article  ADS  Google Scholar 

  27. Bullock JS, Dekel A, Kolatt TS, Kravtsov AV, Klypin AA, Porciani C, Primack JR (2001) A universal angular momentum profile for galactic halos. Astrophys J 555(1):240–257

    Article  ADS  Google Scholar 

  28. Cattaneo A, Dekel A, Devriendt J, Guiderdoni B, Blaizot J (2006) Modelling the galaxy bimodality: shutdown above a critical halo mass. Mon Not R Astron Soc 370:1651–1665

    Article  ADS  Google Scholar 

  29. Cimatti A, Fraternali F, Nipoti C (2019) Introduction to galaxy formation and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  30. Cole S, Aragon-Salamanca A, Frenk CS, Navarro JF, Zepf SE (1994) A recipe for galaxy formation. Mon Not R Astron Soc 271:781–806

    Article  ADS  Google Scholar 

  31. Cole S, Lacey CG, Baugh CM, Frenk CS (2000) Hierarchical galaxy formation. Mon Not R Astron Soc 319(1):168–204

    Article  ADS  Google Scholar 

  32. Correa CA, Schaye J, Wyithe JSB, Duffy AR, Theuns T, Crain RA, Bower RG (2018) The formation of hot gaseous haloes around galaxies. Mon Not R Astron Soc 473(1): 538–559

    Article  ADS  Google Scholar 

  33. Croton DJ, Springel V, White SDM, De Lucia G, Frenk CS, Gao L, Jenkins A, Kauffmann G, Navarro JF, Yoshida N (2006) The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon Not R Astron Soc 365:11–28

    Article  ADS  Google Scholar 

  34. Cuadra J, Armitage PJ, Alexander RD, Begelman MC (2009) Massive black hole binary mergers within subparsec scale gas discs. Mon Not R Astron Soc 393:1423–1432

    Article  ADS  Google Scholar 

  35. Daddi E, Elbaz D, Walter F, Bournaud F, Salmi F, Carilli C, Dannerbauer H, Dickinson M, Monaco P, Riechers D (2010) Different star formation laws for disks versus starbursts at low and high redshifts. Astrophys J Lett 714(1):L118–L122

    Article  ADS  Google Scholar 

  36. Dekel A, Birnboim Y (2006) Galaxy bimodality due to cold flows and shock heating. Mon Not R Astron Soc 368:2–20

    Article  ADS  Google Scholar 

  37. Dekel A, Birnboim Y, Engel G, Freundlich J, Goerdt T, Mumcuoglu M, Neistein E, Pichon C, Teyssier R, Zinger E (2009) Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457:451–454

    Article  ADS  Google Scholar 

  38. Desvignes G, Caballero RN, Lentati L, Verbiest JPW, Champion DJ, Stappers BW, Janssen GH, Lazarus P, Osłowski S, Babak S, Bassa CG, Brem P, Burgay M, Cognard I, Gair JR, Graikou E, Guillemot L, Hessels JWT, Jessner A, Jordan C, Karuppusamy R, Kramer M, Lassus A, Lazaridis K, Lee KJ, Liu K, Lyne AG, McKee J, Mingarelli CMF, Perrodin D, Petiteau A, Possenti A, Purver MB, Rosado PA, Sanidas S, Sesana A, Shaifullah G, Smits R, Taylor SR, Theureau G, Tiburzi C, van Haasteren R, Vecchio A (2016) High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon Not R Astron Soc 458:3341–3380

    Article  ADS  Google Scholar 

  39. Devecchi B, Volonteri M, Rossi EM, Colpi M, Portegies Zwart S (2012) High-redshift formation and evolution of central massive objects – II. The census of BH seeds. Mon Not R Astron Soc 421(2):1465–1475

    Article  ADS  Google Scholar 

  40. Di Matteo T, Springel V, Hernquist L (2005) Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433:604–607

    Article  ADS  Google Scholar 

  41. Di Matteo T, Khandai N, DeGraf C, Feng Y, Croft RAC, Lopez J, Springel V (2012) Cold flows and the first quasars. Astrophys J Lett 745(2):L29

    Article  ADS  Google Scholar 

  42. Di Matteo T, Croft RAC, Feng Y, Waters D, Wilkins S (2017) The origin of the most massive black holes at high-z: BlueTides and the next quasar frontier. Mon Not R Astron Soc 467(4):4243–4251

    Article  ADS  Google Scholar 

  43. Diemand J, Moore B, Stadel J (2005) Earth-mass dark-matter haloes as the first structures in the early Universe. Nature 433(7024):389–391

    Article  ADS  Google Scholar 

  44. Diemer B, Mansfield P, Kravtsov AV, More S (2017) The splashback radius of halos from particle dynamics. II. Dependence on mass, accretion rate, redshift, and cosmology. Astrophys J 843(2):140

    Google Scholar 

  45. Dosopoulou F, Antonini F (2017) Dynamical friction and the evolution of supermassive black hole binaries: the final hundred-parsec problem. Astrophys J 840:31

    Article  ADS  Google Scholar 

  46. Dubois Y, Devriendt J, Slyz A, Teyssier R (2012) Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: methods, tests and implications for cosmological simulations. Mon Not R Astron Soc 420(3):2662–2683

    Article  ADS  Google Scholar 

  47. Duffell PC, D’Orazio D, Derdzinski A, Haiman Z, MacFadyen A, Rosen AL, Zrake J (2019) Circumbinary disks: accretion and torque as a function of mass ratio and disk viscosity. arXiv e-prints arXiv:1911.05506

    Google Scholar 

  48. Dvorkin I, Barausse E (2017) The nightmare scenario: measuring the stochastic gravitational wave background from stalling massive black hole binaries with pulsar timing arrays. Mon Not R Astron Soc 470(4):4547–4556

    Article  ADS  Google Scholar 

  49. Eke VR, Cole S, Frenk CS (1996) Cluster evolution as a diagnostic for Omega. Mon Not R Astron Soc 282:263–280

    Article  ADS  Google Scholar 

  50. Fakhouri O, Ma CP, Boylan-Kolchin M (2010) The merger rates and mass assembly histories of dark matter haloes in the two Millennium simulations. Mon Not R Astron Soc 406(4):2267–2278

    Article  ADS  Google Scholar 

  51. Fan X, Strauss MA, Richards GT, Hennawi JF, Becker RH, White RL, Diamond-Stanic AM, Donley JL, Jiang L, Kim JS, Vestergaard M, Young JE, Gunn JE, Lupton RH, Knapp GR, Schneider DP, Brandt WN, Bahcall NA, Barentine JC, Brinkmann J, Brewington HJ, Fukugita M, Harvanek M, Kleinman SJ, Krzesinski J, Long D, Neilsen J Eric H, Nitta A, Snedden SA, Voges W (2006) A survey of z>5.7 quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars. Astron J 131(3):1203–1209

    Article  ADS  Google Scholar 

  52. Ferrarese L, Côté P, Dalla Bontà E, Peng EW, Merritt D, Jordán A, Blakeslee JP, Haşegan M, Mei S, Piatek S, Tonry JL, West MJ (2006) A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. Astrophys J Lett 644(1):L21–L24

    Article  ADS  Google Scholar 

  53. Frank J, King A, Raine D (2002) Accretion power in astrophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  54. Fujita A, Mac Low MM, Ferrara A, Meiksin A (2004) Cosmological feedback from high-redshift dwarf galaxies. Astrophys J 613(1):159–179

    Article  ADS  Google Scholar 

  55. Gehren T, Fried J, Wehinger PA, Wyckoff S (1984) Host galaxies of quasars and their association with galaxy clusters. Astrophys J 278:11–27

    Article  ADS  Google Scholar 

  56. Genel S, Bouché N, Naab T, Sternberg A, Genzel R (2010) The growth of dark matter halos: evidence for significant smooth accretion. Astrophys J 719(1):229–239

    Article  ADS  Google Scholar 

  57. Genzel R, Tacconi LJ, Gracia-Carpio J, Sternberg A, Cooper MC, Shapiro K, Bolatto A, Bouché N, Bournaud F, Burkert A, Combes F, Comerford J, Cox P, Davis M, Schreiber NMF, Garcia-Burillo S, Lutz D, Naab T, Neri R, Omont A, Shapley A, Weiner B (2010) A study of the gas-star formation relation over cosmic time. Mon Not R Astron Soc 407(4):2091–2108

    Article  ADS  Google Scholar 

  58. Giocoli C, Tormen G, Sheth RK (2012) Formation times, mass growth histories and concentrations of dark matter haloes. Mon Not R Astron Soc 422(1):185–198

    Article  ADS  Google Scholar 

  59. Graham AW (2016) Black hole and nuclear cluster scaling relations: M bh ˜M nc2.7+∕−0.7. In: Meiron Y, Li S, Liu FK, Spurzem R (eds) Star clusters and black holes in galaxies across cosmic time, vol 312, pp 269–273. https://doi.org/10.1017/S1743921315008017, 1412.5715

  60. Graham AW, Spitler LR (2009) Quantifying the coexistence of massive black holes and dense nuclear star clusters. MNRAS 397(4):2148–2162

    Article  ADS  Google Scholar 

  61. Greene JE, Strader J, Ho LC (2019) Intermediate-mass black holes. arXiv e-prints arXiv:1911.09678

    Google Scholar 

  62. Habouzit M, Volonteri M, Dubois Y (2017) Blossoms from black hole seeds: properties and early growth regulated by supernova feedback. Mon Not R Astron Soc 468(4):3935–3948

    Article  ADS  Google Scholar 

  63. Hellings RW, Downs GS (1983) Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. Astrophys J Lett 265:L39–L42

    Article  ADS  Google Scholar 

  64. Holley-Bockelmann K, Khan FM (2015) Galaxy rotation and rapid supermassive binary coalescence. Astrophys J 810:139

    Article  ADS  Google Scholar 

  65. Hopkins PF, Cox TJ, Kereš D, Hernquist L (2008) A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. II. Formation of red ellipticals. Astrophys J 175(2):390–422

    Google Scholar 

  66. Jenkins A, Frenk CS, White SDM, Colberg JM, Cole S, Evrard AE, Couchman HMP, Yoshida N (2001) The mass function of dark matter haloes. Mon Not R Astron Soc 321(2):372–384

    Article  ADS  Google Scholar 

  67. Jiang F, van den Bosch FC (2014) Generating merger trees for dark matter haloes: a comparison of methods. Mon Not R Astron Soc 440(1):193–207

    Article  ADS  Google Scholar 

  68. Kauffmann G, White SDM (1993) The merging history of dark matter haloes in a hierarchical universe. Mon Not R Astron Soc 261:921–928

    Article  ADS  Google Scholar 

  69. Kauffmann G, White SDM, Guiderdoni B (1993) The formation and evolution of galaxies within merging dark matter haloes. Mon Not R Astron Soc 264:201–218

    Article  ADS  Google Scholar 

  70. Khan FM, Just A, Merritt D (2011) Efficient merger of binary supermassive black holes in merging galaxies. Astrophys J 732(2):89

    Article  ADS  Google Scholar 

  71. Klein A, Barausse E, Sesana A, Petiteau A, Berti E, Babak S, Gair J, Aoudia S, Hinder I, Ohme F, Wardell B (2016) Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys Rev D 93(2):024003

    Article  ADS  Google Scholar 

  72. Kormendy J, Ho LC (2013) Coevolution (Or Not) of supermassive black holes and host galaxies. Annu Rev Astron Astrophys 51:511–653

    Article  ADS  Google Scholar 

  73. Kormendy J, Richstone D (1995) Inward bound—the search for supermassive black holes in galactic nuclei. Annu Rev Astron Astrophys 33:581

    Article  ADS  Google Scholar 

  74. Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. Astron J 67:591

    Article  ADS  MathSciNet  Google Scholar 

  75. Kroupa P, Subr L, Jerabkova T, Wang L (2020) Very high redshift quasars and the rapid emergence of supermassive black holes. Mon Not R Astron Soc 498(4):5652–5683

    ADS  Google Scholar 

  76. Lacey C, Cole S (1993) Merger rates in hierarchical models of galaxy formation. Mon Not R Astron Soc 262(3):627–649

    Article  ADS  Google Scholar 

  77. Lapi A, Cavaliere A (2011) Self-similar dynamical relaxation of dark matter halos in an expanding universe. Astrophys J 743(2):127

    Article  ADS  Google Scholar 

  78. Lapi A, Danese L (2020) A stochastic theory of the hierarchical clustering I. Halo mass function. arXiv e-prints arXiv:2009.07023

    Google Scholar 

  79. Lapi A, Salucci P, Danese L (2013) Statistics of dark matter halos from the excursion set approach. Astrophys J 772(2):85

    Article  ADS  Google Scholar 

  80. Latif MA, Ferrara A (2016) Formation of supermassive black hole seeds. Publ Astron Soc Austral 33:e051

    Article  ADS  Google Scholar 

  81. Latif MA, Ferrara A (2016) Formation of supermassive black hole seeds. Publ Astron Soc Aust 33:e051

    Article  ADS  Google Scholar 

  82. Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet Space Sci 9:719–759

    Article  ADS  Google Scholar 

  83. Lodato G, Nayakshin S, King AR, Pringle JE (2009) Black hole mergers: can gas discs solve the ‘final parsec’ problem? Mon Not R Astron Soc 398:1392–1402

    Article  ADS  Google Scholar 

  84. Macciò AV, Dutton AA, van den Bosch FC (2008) Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results. Mon Not R Astron Soc 391(4):1940–1954

    Article  ADS  Google Scholar 

  85. MacFadyen AI, Milosavljević M (2008) An eccentric circumbinary accretion disk and the detection of binary massive black holes. Astrophys J 672:83–93

    Article  ADS  Google Scholar 

  86. Madau P, Rees MJ (2001) Massive black holes as population III remnants. Astrophys J Lett 551:L27–L30

    Article  ADS  Google Scholar 

  87. Madau P, Haardt F, Dotti M (2014) Super-critical growth of massive black holes from stellar-mass seeds. Astrophys J Lett 784:L38

    Article  ADS  Google Scholar 

  88. Mayer L, Bonoli S (2019) The route to massive black hole formation via merger-driven direct collapse: a review. Rep Prog Phys 82(1):016901

    Article  ADS  Google Scholar 

  89. Mayer L, Kazantzidis S, Escala A, Callegari S (2010) Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers. Nature 466(7310):1082–1084

    Article  ADS  Google Scholar 

  90. Mayer L, Fiacconi D, Bonoli S, Quinn T, Roškar R, Shen S, Wadsley J (2015) Direct formation of supermassive black holes in metal-enriched gas at the heart of high-redshift Galaxy mergers. Astrophys J 810(1):51

    Article  ADS  Google Scholar 

  91. McConnell NJ, Ma CP (2013) Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys J 764:184

    Article  ADS  Google Scholar 

  92. Mo H, van den Bosch F, White S (2009) Galaxy formation and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  93. Mo HJ, White SDM (1996) An analytic model for the spatial clustering of dark matter haloes. Mon Not R Astron Soc 282(2):347–361

    Article  ADS  Google Scholar 

  94. Mo HJ, Mao S, White SDM (1998) The formation of galactic discs. Mon Not R Astron Soc 295(2):319–336

    Article  ADS  Google Scholar 

  95. Monaco P, Fontanot F, Taffoni G (2007) The MORGANA model for the rise of galaxies and active nuclei. Mon Not R Astron Soc 375(4):1189–1219

    Article  ADS  Google Scholar 

  96. More S, Diemer B, Kravtsov AV (2015) The splashback radius as a physical halo boundary and the growth of halo mass. Astrophys J 810(1):36

    Article  ADS  Google Scholar 

  97. Mortlock DJ, Warren SJ, Venemans BP, Patel M, Hewett PC, McMahon RG, Simpson C, Theuns T, Gonzáles-Solares EA, Adamson A, Dye S, Hambly NC, Hirst P, Irwin MJ, Kuiper E, Lawrence A, Röttgering HJA (2011) A luminous quasar at a redshift of z = 7.085. Nature 474(7353):616–619

    Article  ADS  Google Scholar 

  98. Muñoz DJ, Miranda R, Lai D (2019) Hydrodynamics of circumbinary accretion: angular momentum transfer and binary orbital evolution. Astrophys J 871(1):84

    Article  ADS  Google Scholar 

  99. Navarro JF, Frenk CS, White SDM (1997) A universal density profile from hierarchical clustering. Astrophys J 490(2):493–508

    Article  ADS  Google Scholar 

  100. Nelson D, Pillepich A, Springel V, Pakmor R, Weinberger R, Genel S, Torrey P, Vogelsberger M, Marinacci F, Hernquist L (2019) First Results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon Not R Astron Soc 490:3234–3261

    Article  ADS  Google Scholar 

  101. Nixon CJ, Cossins PJ, King AR, Pringle JE (2011) Retrograde accretion and merging supermassive black holes. Mon Not R Astron Soc 412:1591–1598

    Article  ADS  Google Scholar 

  102. Parkinson H, Cole S, Helly J (2008) Generating dark matter halo merger trees. Mon Not R Astron Soc 383:557–564

    Article  ADS  Google Scholar 

  103. Steven (Department of Physics Weinberg UoTaA, Weinberg S (2008) Cosmology. Oxford University Publishing, Oxford

    Google Scholar 

  104. Planck Collaboration, Aghanim N, Akrami Y, Ashdown M, Aumont J, Baccigalupi C, Ballardini M, Banday AJ, Barreiro RB, Bartolo N, Basak S, Battye R, Benabed K, Bernard JP, Bersanelli M, Bielewicz P, Bock JJ, Bond JR, Borrill J, Bouchet FR, Boulanger F, Bucher M, Burigana C, Butler RC, Calabrese E, Cardoso JF, Carron J, Challinor A, Chiang HC, Chluba J, Colombo LPL, Combet C, Contreras D, Crill BP, Cuttaia F, de Bernardis P, de Zotti G, Delabrouille J, Delouis JM, Di Valentino E, Diego JM, Doré O, Douspis M, Ducout A, Dupac X, Dusini S, Efstathiou G, Elsner F, Enßlin TA, Eriksen HK, Fantaye Y, Farhang M, Fergusson J, Fernandez-Cobos R, Finelli F, Forastieri F, Frailis M, Fraisse AA, Franceschi E, Frolov A, Galeotta S, Galli S, Ganga K, Génova-Santos RT, Gerbino M, Ghosh T, González-Nuevo J, Górski KM, Gratton S, Gruppuso A, Gudmundsson JE, Hamann J, Handley W, Hansen FK, Herranz D, Hildebrandt SR, Hivon E, Huang Z, Jaffe AH, Jones WC, Karakci A, Keihänen E, Keskitalo R, Kiiveri K, Kim J, Kisner TS, Knox L, Krachmalnicoff N, Kunz M, Kurki-Suonio H, Lagache G, Lamarre JM, Lasenby A, Lattanzi M, Lawrence CR, Le Jeune M, Lemos P, Lesgourgues J, Levrier F, Lewis A, Liguori M, Lilje PB, Lilley M, Lindholm V, López-Caniego M, Lubin PM, Ma YZ, Macías-Pérez JF, Maggio G, Maino D, Mandolesi N, Mangilli A, Marcos-Caballero A, Maris M, Martin PG, Martinelli M, Martínez-González E, Matarrese S, Mauri N, McEwen JD, Meinhold PR, Melchiorri A, Mennella A, Migliaccio M, Millea M, Mitra S, Miville-Deschênes MA, Molinari D, Montier L, Morgante G, Moss A, Natoli P, Nørgaard-Nielsen HU, Pagano L, Paoletti D, Partridge B, Patanchon G, Peiris HV, Perrotta F, Pettorino V, Piacentini F, Polastri L, Polenta G, Puget JL, Rachen JP, Reinecke M, Remazeilles M, Renzi A, Rocha G, Rosset C, Roudier G, Rubiño-Martín JA, Ruiz-Granados B, Salvati L, Sandri M, Savelainen M, Scott D, Shellard EPS, Sirignano C, Sirri G, Spencer LD, Sunyaev R, Suur-Uski AS, Tauber JA, Tavagnacco D, Tenti M, Toffolatti L, Tomasi M, Trombetti T, Valenziano L, Valiviita J, Van Tent B, Vibert L, Vielva P, Villa F, Vittorio N, Wand elt BD, Wehus IK, White M, White SDM, Zacchei A, Zonca A (2018) Planck 2018 results. VI. Cosmological parameters. arXiv e-prints arXiv:1807.06209

    Google Scholar 

  105. Pontzen A, Tremmel M, Roth N, Peiris HV, Saintonge A, Volonteri M, Quinn T, Governato F (2017) How to quench a galaxy. Mon Not R Astron Soc 465:547–558

    Article  ADS  Google Scholar 

  106. Portegies Zwart SF, Baumgardt H, Hut P, Makino J, McMillan SLW (2004) Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428(6984):724–726

    Article  ADS  Google Scholar 

  107. Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys J 187:425–438

    Article  ADS  Google Scholar 

  108. Quinlan GD (1996) The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background. Nat Astron 1:35–56

    ADS  Google Scholar 

  109. Rasera Y, Teyssier R (2006) The history of the baryon budget. Cosmic logistics in a hierarchical universe. Astron Astrophys 445(1):1–27

    Article  ADS  MATH  Google Scholar 

  110. Reines AE, Sivakoff GR, Johnson KE, Brogan CL (2011) An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10. Nature 470:66–68

    Article  ADS  Google Scholar 

  111. Reines AE, Greene JE, Geha M (2013) Dwarf galaxies with optical signatures of active massive black holes. Astrophys J 775:116

    Article  ADS  Google Scholar 

  112. Ricarte A, Tremmel M, Natarajan P, Quinn T (2019) Tracing black hole and galaxy co-evolution in the ROMULUS simulations. Mon Not R Astron Soc 489(1): 802–819

    Article  ADS  Google Scholar 

  113. Roedig C, Dotti M, Sesana A, Cuadra J, Colpi M (2011) Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs. Mon Not R Astron Soc 415:3033–3041

    Article  ADS  Google Scholar 

  114. Sahu N, Graham AW, Davis BL (2019) Black hole mass scaling relations for early-type galaxies. I. M BH-M ∗,sph and M BH-M ∗,gal. Astrophys J 876(2):155

    Google Scholar 

  115. Sahu N, Graham AW, Davis BL (2019) Revealing hidden substructures in the M BH-σ diagram, and refining the bend in the L-σ relation. Astrophys J 887(1):10

    Article  ADS  Google Scholar 

  116. Schaye J, Crain RA, Bower RG, Furlong M, Schaller M, Theuns T, Dalla Vecchia C, Frenk CS, McCarthy IG, Helly JC, Jenkins A, Rosas-Guevara YM, White SDM, Baes M, Booth CM, Camps P, Navarro JF, Qu Y, Rahmati A, Sawala T, Thomas PA, Trayford J (2015) The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon Not R Astron Soc 446:521–554

    Article  ADS  Google Scholar 

  117. Schramm M, Silverman JD (2013) The black hole-bulge mass relation of active galactic nuclei in the extended chandra deep field-south survey. Astrophys J 767:13

    Article  ADS  Google Scholar 

  118. Scott N, Graham AW, Schombert J (2013) The supermassive black hole mass-spheroid stellar mass relation for Sérsic and Core-Sérsic galaxies. Astrophys J 768(1):76

    Article  ADS  Google Scholar 

  119. Sesana A, Khan FM (2015) Scattering experiments meet N-body – I. A practical recipe for the evolution of massive black hole binaries in stellar environments. Mon Not R Astron Soc 454:L66–L70

    Article  ADS  Google Scholar 

  120. Sesana A, Haardt F, Madau P (2006) Interaction of massive black hole binaries with their stellar environment. I. Ejection of hypervelocity stars. Astrophys J 651:392–400

    Article  ADS  Google Scholar 

  121. Sesana A, Barausse E, Dotti M, Rossi EM (2014) Linking the spin evolution of massive black holes to galaxy kinematics. Astrophys J 794:104

    Article  ADS  Google Scholar 

  122. Sesana A, Shankar F, Bernardi M, Sheth RK (2016) Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays. Mon Not R Astron Soc 463:L6–L11

    Article  ADS  Google Scholar 

  123. Shankar F, Bernardi M, Sheth RK, Ferrarese L, Graham AW, Savorgnan G, Allevato V, Marconi A, Läsker R, Lapi A (2016) Selection bias in dynamically measured supermassive black hole samples: its consequences and the quest for the most fundamental relation. Mon Not R Astron Soc 460:3119–3142

    Article  ADS  Google Scholar 

  124. Shannon RM, Ravi V, Lentati LT, Lasky PD, Hobbs G, Kerr M, Manchester RN, Coles WA, Levin Y, Bailes M, Bhat NDR, Burke-Spolaor S, Dai S, Keith MJ, Osłowski S, Reardon DJ, van Straten W, Toomey L, Wang JB, Wen L, Wyithe JSB, Zhu XJ (2015) Gravitational waves from binary supermassive black holes missing in pulsar observations. Science 349:1522–1525

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. Sharma S, Steinmetz M (2005) The angular momentum distribution of gas and dark matter in galactic halos. Astrophys J 628(1):21–44

    Article  ADS  Google Scholar 

  126. Sheth RK, Tormen G (1999) Large-scale bias and the peak background split. Mon Not R Astron Soc 308(1):119–126

    Article  ADS  Google Scholar 

  127. Somerville RS, Primack JR (1999) Semi-analytic modelling of galaxy formation: the local Universe. Mon Not R Astron Soc 310:1087–1110

    Article  ADS  Google Scholar 

  128. Springel V, Hernquist L (2002) Cosmological smoothed particle hydrodynamics simulations: the entropy equation. Mon Not R Astron Soc 333(3):649–664

    Article  ADS  Google Scholar 

  129. Taffoni G, Mayer L, Colpi M, Governato F (2003) On the life and death of satellite haloes. Mon Not R Astron Soc 341:434–448

    Article  ADS  Google Scholar 

  130. Tinker J, Kravtsov AV, Klypin A, Abazajian K, Warren M, Yepes G, Gottlöber S, Holz DE (2008) Toward a halo mass function for precision cosmology: the limits of universality. Astrophys J 688(2):709–728

    Article  ADS  Google Scholar 

  131. Tremmel M, Karcher M, Governato F, Volonteri M, Quinn TR, Pontzen A, Anderson L, Bellovary J (2017) The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. Mon Not R Astron Soc 470:1121–1139

    Article  ADS  Google Scholar 

  132. Tremmel M, Governato F, Volonteri M, Quinn TR, Pontzen A (2018) Dancing to CHANGA: a self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers. Mon Not R Astron Soc 475:4967–4977

    Article  ADS  Google Scholar 

  133. van den Bosch FC, Burkert A, Swaters RA (2001) The angular momentum content of dwarf galaxies: new challenges for the theory of galaxy formation. Mon Not R Astron Soc 326(3):1205–1215

    Article  ADS  Google Scholar 

  134. Vasiliev E (2014) Rates of capture of stars by supermassive black holes in non-spherical galactic nuclei. Classical Quantum Gravity 31(24):244002

    Article  ADS  MATH  Google Scholar 

  135. Vasiliev E, Antonini F, Merritt D (2014) The Final-parsec Problem in Nonspherical Galaxies Revisited. Astrophys J 785:163

    Article  ADS  Google Scholar 

  136. Vasiliev E, Antonini F, Merritt D (2015) The Final-parsec Problem in the Collisionless Limit. Astrophys J 810(1):49

    Article  ADS  Google Scholar 

  137. Venemans BP, Walter F, Decarli R, Bañados E, Carilli C, Winters JM, Schuster K, da Cunha E, Fan X, Farina EP, Mazzucchelli C, Rix HW, Weiss A (2017) Copious amounts of dust and gas in a z = 7.5 quasar host galaxy. Astrophys J Lett 851(1):L8

    Google Scholar 

  138. Venemans BP, Walter F, Decarli R, Ferkinhoff C, Weiß A, Findlay JR, McMahon RG, Sutherland WJ, Meijerink R (2017) Molecular gas in three z ∼7 quasar host galaxies. Astrophys J 845(2):154

    Article  ADS  Google Scholar 

  139. Venemans BP, Decarli R, Walter F, Bañados E, Bertoldi F, Fan X, Farina EP, Mazzucchelli C, Riechers D, Rix HW, Wang R, Yang Y (2018) Dust emission in an accretion-rate-limited sample of z ≳ 6 Quasars. Astrophys J 866(2):159

    Article  ADS  Google Scholar 

  140. Vogelsberger M, Genel S, Springel V, Torrey P, Sijacki D, Xu D, Snyder G, Bird S, Nelson D, Hernquist L (2014) Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509:177–182

    Article  ADS  Google Scholar 

  141. Volonteri M, Reines AE (2016) Inferences on the relations between central black hole mass and total galaxy stellar mass in the high-redshift universe. Astrophys J Lett 820:L6

    Article  ADS  Google Scholar 

  142. Volonteri M, Lodato G, Natarajan P (2008) The evolution of massive black hole seeds. Mon Not R Astron Soc 383:1079–1088

    Article  ADS  Google Scholar 

  143. Volonteri M, Dubois Y, Pichon C, Devriendt J (2016) The cosmic evolution of massive black holes in the Horizon-AGN simulation. Mon Not R Astron Soc 460:2979–2996

    Article  ADS  Google Scholar 

  144. Watson WA, Iliev IT, D’Aloisio A, Knebe A, Shapiro PR, Yepes G (2013) The halo mass function through the cosmic ages. Mon Not R Astron Soc 433(2):1230–1245

    Article  ADS  Google Scholar 

  145. Yu Q (2002) Evolution of massive binary black holes. Mon Not R Astron Soc 331:935–958

    Article  ADS  Google Scholar 

  146. Zhang J, Hui L (2006) On random walks with a general moving barrier. Astrophys J 641(2):641–646

    Article  ADS  MathSciNet  Google Scholar 

  147. Zhang J, Ma CP, Fakhouri O (2008) Conditional mass functions and merger rates of dark matter haloes in the ellipsoidal collapse model. Mon Not R Astron Soc 387(1):L13–L17

    Article  ADS  Google Scholar 

  148. Zhao DH, Jing YP, Mo HJ, Börner G (2003) Mass and redshift dependence of dark halo structure. Astrophys J Lett 597(1):L9–L12

    Article  ADS  Google Scholar 

  149. Zhao DH, Jing YP, Mo HJ, Börner G (2009) Accurate universal models for the mass accretion histories and concentrations of dark matter halos. Astrophys J 707(1):354–369

    Article  ADS  Google Scholar 

  150. Zjupa J, Springel V (2017) Angular momentum properties of haloes and their baryon content in the Illustris simulation. Mon Not R Astron Soc 466(2):1625–1647

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.B. acknowledges financial support provided under the European Union’s H2020 ERC Consolidator Grant “GRavity from Astrophysical to Microscopic Scales” grant agreement no. GRAMS-815673. E.B. thanks I. Dvorkin, M. Bonetti, M. Tremmel, and M. Volonteri for numerous insightful conversations on the astrophysics of galaxies and black holes and for agreeing to adapting the figures of [9]. A.L. acknowledges financial support from the EU H2020-MSCAITN-2019 Project 860744 “BiD4BEST: Big Data applications for Black hole Evolution STudies” and from the PRIN MIUR 2017 prot. 20173ML3WW 002, “Opening the ALMA window on the cosmic evolution of gas, stars and massive black holes.” We thank J. Gonzalez for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Barausse .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barausse, E., Lapi, A. (2021). Massive Black-Hole Mergers. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_18-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics