Skip to main content

Benzo(a)Pyrene Induced ROS-Mediated Lung Cancer

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Mechanistic Aspects

Abstract

Lung cancer is the world’s second-largest cause of death from cancer. Cigarette smoking is identified as one of the single, well-known risk factors for lung cancer of all types. A potent carcinogen in cigarette smoke is benzo(a)pyrene (B[a]P). Its reactive metabolite, which can cause mutations, induces DNA adducts. In the respiratory system, reactive oxygen (ROS) and oxidative stress increase the production of pulmonary inflammatory mediators and activate or facilitate carcinogenic mechanisms. Recent epidemiological studies have demonstrated correlations between increased incidence of respiratory diseases and lung cancer from benzo(a)pyrene exposure. This chapter summarizes how benzo(a)pyrene induces lung cancer through oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexandrov K, Rojas M, Rolando C (2006) DNA damage by benzo (a) pyrene in human cells is increased by cigarette smoke and decreased by a filter containing rosemary extract, which lowers free radicals. Cancer Res 66:11938–11945

    Article  CAS  PubMed  Google Scholar 

  • Alzahrani AM, Rajendran P (2020) The multifarious link between cytochrome P450s and cancer. Oxidative Med Cell Longev 2020:1–18

    Google Scholar 

  • Arlt VM, Krais AM, Godschalk RW, Riffo-Vasquez Y, Mrizova I, Roufosse CA, Corbin C, Shi Q, Frei E, Stiborova M (2015) Pulmonary inflammation impacts on CYP1A1-mediated respiratory tract DNA damage induced by the carcinogenic air pollutant benzo [a] pyrene. Toxicol Sci 146:213–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azari MR, Mohammadian Y, Pourahmad J, Khodagholi F, Peirovi H, Mehrabi Y, Omidi M, Rafieepour A (2019) Individual and combined toxicity of carboxylic acid functionalized multi-walled carbon nanotubes and benzo a pyrene in lung adenocarcinoma cells. Environ Sci Pollut Res 26:12709–12719

    Article  CAS  Google Scholar 

  • Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK (2019) Acetyl-11-keto-β-boswellic acid modulates membrane dynamics in benzo (a) pyrene-induced lung carcinogenesis. Mol Cell Biochem 460:17–27

    Article  CAS  PubMed  Google Scholar 

  • Burczynski ME, Lin H-K, Penning TM (1999) Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 59:607–614

    CAS  PubMed  Google Scholar 

  • Burdick AD, Davis JW, Liu KJ, Hudson LG, Shi H, Monske ML, Burchiel SW (2003) Benzo (a) pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res 63:7825–7833

    CAS  PubMed  Google Scholar 

  • Cavalieri E, Rogan EG (1995) Central role of radical cations in metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25:677–688

    Article  CAS  PubMed  Google Scholar 

  • Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechanet C, Anahory T, Mathieu Daude J, Quantin X, Reyftmann L, Hamamah S, Hédon B, Déchaud H (2011) Effects of cigarette smoking on reproduction. Hum Reprod Update 17:76–95

    Article  CAS  PubMed  Google Scholar 

  • EOM SY, YIM DH, Moon SI, Youn J-W, Kwon H-J, Oh HC, Yang JJ, Park SK, Yoo K-Y, Kim HS (2013) Polycyclic aromatic hydrocarbon-induced oxidative stress, antioxidant capacity, and the risk of lung cancer: a pilot nested case-control study. Anticancer Res 33:3089–3097

    CAS  PubMed  Google Scholar 

  • Ewa B, Danuta M-Š (2017) Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. J Appl Genet 58:321–330

    Article  CAS  PubMed  Google Scholar 

  • França K, França AP, de França R (2017) Environmental psychodermatology: stress, environment and skin. In: Stress and skin disorders. Springer, pp 47–53

    Chapter  Google Scholar 

  • Hayes P, Dhillon S, O’Neill K, Thoeni C, Hui KY, Elkadri A, Guo CH, Kovacic L, Aviello G, Alvarez LA (2015) Defects in nicotinamide-adenine dinucleotide phosphate oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1:489–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Henkler F, Stolpmann K, Luch A (2012) Exposure to polycyclic aromatic hydrocarbons: bulky DNA adducts and cellular responses. In: Molecular, clinical and environmental toxicology. Springer, pp 107–131

    Chapter  Google Scholar 

  • Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4:519–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji C, Marnett L (1992) Oxygen radical-dependent epoxidation of (7S, 8S)-dihydroxy-7, 8-dihydrobenzo [a] pyrene in mouse skin in vivo. Stimulation by phorbol esters and inhibition by antiinflammatory steroids. J Biol Chem 267:17842–17848

    Article  CAS  PubMed  Google Scholar 

  • Li J, M-s T, Liu B, Shi X, Huang C (2004) A critical role of PI-3K/Akt/JNKs pathway in benzo [a] pyrene diol-epoxide (B [a] PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 23:3932–3944

    Article  CAS  PubMed  Google Scholar 

  • Li W, Hu J, Adebali O, Adar S, Yang Y, Chiou Y-Y, Sancar A (2017) Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo [a] pyrene. Proc Natl Acad Sci 114:6752–6757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Stepanov I, Hecht SS (2019) Recent studies on DNA adducts resulting from human exposure to tobacco smoke. Toxics 7:16

    Article  CAS  PubMed Central  Google Scholar 

  • Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D (2006) Antitumour activity of crocetin in accordance to tumor incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem 287:127–135

    Article  CAS  PubMed  Google Scholar 

  • Malani PN (2012) Harrison’s principles of internal medicine. JAMA 308:1813–1814

    Article  CAS  Google Scholar 

  • Martinez-Useros J, Li W, Cabeza-Morales M, Garcia-Foncillas J (2017) Oxidative stress: a new target for pancreatic cancer prognosis and treatment. J Clin Med 6:29

    Article  PubMed Central  CAS  Google Scholar 

  • Matter B, Wang G, Jones R, Tretyakova N (2004) Formation of diastereomeric benzo [a] pyrene diol epoxide-guanine adducts in p53 gene-derived DNA sequences. Chem Res Toxicol 17:731–741

    Article  CAS  PubMed  Google Scholar 

  • Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res Genet Toxicol Environ Mutagen 674:36–44

    Article  CAS  Google Scholar 

  • Mileo AM, Miccadei S (2016) Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxidative Med Cell Longev 2016:1–17

    Google Scholar 

  • Moorthy B, Miller KP, Jiang W, Williams ES, Kondraganti SR, Ramos KS (2003) Role of cytochrome P4501B1 in benzo [a] pyrene bioactivation to DNA-binding metabolites in mouse vascular smooth muscle cells: evidence from 32P-postlabeling for formation of 3-hydroxybenzo [a] pyrene and benzo [a] pyrene-3, 6-quinone as major proximate genotoxic intermediates. J Pharmacol Exp Ther 305:394–401

    Article  CAS  PubMed  Google Scholar 

  • Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam N, George J, Srivastava S, Roy P, Bhui K, Singh M, Shukla Y (2010) Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B [a] P-induced mouse skin tumorigenesis. Cancer Chemother Pharmacol 65:687–696

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara Y, Imase M, Oda H, Wakabayashi H, Ishii K (2014) Lactoferrin directly scavenges hydroxyl radicals and undergoes oxidative self-degradation: a possible role in protection against oxidative DNA damage. Int J Mol Sci 15:1003–1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panday A, Sahoo MK, Osorio D, Batra S (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12:5

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Ekambaram G, Sakthisekaran D (2008) Effect of mangiferin on benzo (a) pyrene induced lung carcinogenesis in experimental Swiss albino mice. Nat Prod Res 22:672–680

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Jayakumar T, Nishigaki I, Ekambaram G, Nishigaki Y, Vetriselvi J, Sakthisekaran D (2013) Immunomodulatory effect of mangiferin in experimental animals with benzo (a) pyrene-induced lung carcinogenesis. Int J Biomed Sci: IJBS 9:68

    PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Nandakumar N, Rengarajan T, Palaniswami R, Gnanadhas EN, Lakshminarasaiah U, Gopas J, Nishigaki I (2014a) Antioxidants and human diseases. Clin Chim Acta 436:332–347

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Rengarajan T, Nishigaki I, Ekambaram G, Sakthisekaran D (2014b) Potent chemopreventive effect of mangiferin on lung carcinogenesis in experimental Swiss albino mice. J Cancer Res Ther 10:1033

    Article  PubMed  Google Scholar 

  • Reed GA, Layton ME, Ryan MJ (1988) Metabolic activation of cyclopenteno [c, d] pyrene by peroxyl radicals. Carcinogenesis 9:2291–2295

    Article  CAS  PubMed  Google Scholar 

  • Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5:182–189

    Article  CAS  Google Scholar 

  • Rodríguez-Fragoso L, Melendez K, Hudson LG, Lauer FT, Burchiel SW (2009) EGF-receptor phosphorylation and downstream signaling are activated by benzo [a] pyrene 3, 6-quinone and benzo [a] pyrene 1, 6-quinone in human mammary epithelial cells. Toxicol Appl Pharmacol 235:321–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiizaki K, Kawanishi M, Yagi T (2017) Modulation of benzo [a] pyrene–DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ 39:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siauciunaite R, Foulkes NS, Calabrò V, Vallone D (2019) Evolution shapes the gene expression response to oxidative stress. Int J Mol Sci 20:3040

    Article  CAS  PubMed Central  Google Scholar 

  • Smith BJ, Curtis JF, Eling T (1991) Bioactivation of xenobiotics by prostaglandin H synthase. Chem Biol Interact 79:245–264

    Article  CAS  PubMed  Google Scholar 

  • Smith JN, Mehinagic D, Nag S, Crowell SR, Corley RA (2017) In vitro metabolism of benzo [a] pyrene-7, 8-dihydrodiol and dibenzo [def, p] chrysene-11, 12 diol in rodent and human hepatic microsomes. Toxicol Lett 269:23–32

    Article  CAS  PubMed  Google Scholar 

  • Smithgall T, Harvey R, Penning T (1986) Regio-and stereospecificity of homogeneous 3 alpha-hydroxysteroid-dihydrodiol dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons. J Biol Chem 261:6184–6191

    Article  CAS  PubMed  Google Scholar 

  • Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME (2013) Oxidative stress and cancer: an overview. Ageing Res Rev 12:376–390

    Article  CAS  PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  • Tsay JJ, Tchou-Wong K-M, Greenberg AK, Pass H, Rom WN (2013) Aryl hydrocarbon receptor and lung cancer. Anticancer Res 33:1247–1256

    PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C 27:120–139

    Article  CAS  Google Scholar 

  • Van Cantfort J, Lorand T, Gielen J, Lapière C (1986) Human epidermal blister: a convenient tissue for toxicological and genetic studies of benzo (a) pyrene metabolism. Arch Dermatol Res 278:324–328

    Article  PubMed  Google Scholar 

  • Yu D, Berlin JA, Penning TM, Field J (2002) Reactive oxygen species generated by PAH o-quinones cause change-in-function mutations in p53. Chem Res Toxicol 15:832–842

    Article  CAS  PubMed  Google Scholar 

  • Zahin M, Ahmad I, Gupta RC, Aqil F (2014) Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo [a] pyrene induced DNA adducts. Biomed Res Int 2014:1–10

    Google Scholar 

  • Zhang L, Huang M, Blair IA, Penning TM (2012) Detoxication of benzo [a] pyrene-7, 8-dione by sulfotransferases (SULTs) in human lung cells. J Biol Chem 287:29909–29920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peramaiyan Rajendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ammar, R.B., Al Saeedi, F.J., Ahmed, E.A., Rajendran, P. (2021). Benzo(a)Pyrene Induced ROS-Mediated Lung Cancer. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics