Skip to main content

Hyperglycolysis-Inflammation Connect as a Mechanistic Hot Spot in Oxidatively Compromised Cancer

  • Living reference work entry
  • First Online:
  • 25 Accesses

Abstract

Hyperglycolysis, as a major bioenergetics shift in the growing tumor cells, ensures adequate amount of ATP synthesis by avoiding mitochondrial oxidative mechanism and thereby protects tumor cells from reactive oxygen species (ROS)-induced cellular damage. Such an oxidatively compromised state of the tumor cells is considered crucial for making them immortal. The generation of pro-inflammatory factors around the tumor cells is advocated as another important event, and that, together with the hyperglycolysis, it constitutes a pro-tumorigenic tumor microenvironment (TME) and facilitates in vivo tumorigenesis. Herein, the enhanced lactate secretion, due to upregulated aerobic glycolysis, by the tumor stem cells (TSCs), acts as a key integrator of hyperglycolysis-inflammation connect. Consequently, dynamic interaction takes place between the TSC, the tumor-associated macrophages (TAMs), and the tumor matrix around the TSC niche. The TAMs play a central role in orchestrating neoplastic growth around the TSCs. The lactate-dependent transition from M1 (tumoricidal) macrophages to M2 (immunosuppressive and pro-tumorigenic) phenotype is considered the most critical event of this mechanism.

In this chapter, we have attempted to summarize the recent advances in the area of tumor growth associated with hyperglycolysis-inflammation connect in general and on the TAM-mediated endothelial-mesenchymal transition (EMT), required for angiogenesis and metastasis in the growing in vivo tumors in particular. The key hyperglycolytic players focused are hexokinase II, inducible phosphofructokinase 2, pyruvate kinase M2, and M4-lactate dehydrogenase, and those of inflammation are colony-stimulating factor 1 (CSF1) and several other cytokines. The TAM, the programmed cell death-1 ligand (PD-L1), and PD-1-mediated suppression of T cell response against cancer cells have been given special focus. Similarly, the role of REDD1 (regulated in development and DNA damage responses 1), a potent stress response factor, in TAM-mediated metastasis and neovascularization, has been advocated as an evolving concept of TAM-mediated tumorigenesis. In view of the above, we have tried to summarize the current status about whether these key players of hyperglycolysis-inflammation axis could be exploited as targets for restricting tumor growth in vivo.

This is a preview of subscription content, log in via an institution.

References

  • Akinleye A, Rasool Z (2019) Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 12(1):92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akins NS, Nielson TC, Le HV (2018) Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr Top Med Chem 18(6):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alves AP, Mamede AC, Alves MG, Oliveira PF, Rocha SM, Botelho MF, Maia CJ (2019) Glycolysis inhibition as a strategy for hepatocellular carcinoma treatment? Curr Cancer Drug Targets 19(1):26–40

    Article  CAS  PubMed  Google Scholar 

  • Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22(1):33–40. Academic Press

    Article  CAS  PubMed  Google Scholar 

  • Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596

    Article  CAS  PubMed  Google Scholar 

  • Bao F, Yang K, Wu C, Gao S, Wang P, Chen L, Li H (2018) New natural inhibitors of hexokinase 2 (HK2): steroids from Ganoderma sinense. Fitoterapia 125:123–129

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Tan W, Wang C (2018) Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial–mesenchymal transition. Onco Targets Ther 11:3817

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhry H, Harris AL (2018) Advances in hypoxia-inducible factor biology. Cell Metab 27(2):281–298

    Article  CAS  PubMed  Google Scholar 

  • Clem BF, O’Neal J, Tapolsky G et al (2013) Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther 12(8):1461–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of Cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Yu F, Chen J, Zhao Y, Xiang J, Lin A (2008) Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J Biol Chem 283(30):20754–20760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWaal D, Nogueira V, Terry AR, Patra KC, Jeon SM, Guzman G, Au J, Long CP, Antoniewicz MR, Hay N (2018) Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun 9(1):1–4

    CAS  Google Scholar 

  • Dodou K (2005) Investigations on gossypol: past and present developments. Expert Opin Investig Drugs 14(11):1419–1434

    Article  CAS  PubMed  Google Scholar 

  • Epstein T, Gatenby RA, Brown JS (2017) The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 12(9):e0185085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng Y, Xiong Y, Qiao T, Li X, Jia L, Han Y (2018) Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med 7(12):6124–6136

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Wu L, Ji J, Chen K, Yu Q, Zhang J, Chen J, Mao Y, Wang F, Dai W, Xu L (2019) PKM2 is the target of proanthocyanidin B2 during the inhibition of hepatocellular carcinoma. J Exp Clin Cancer Res 38(1):1–5

    Article  Google Scholar 

  • Germano G, Allavena P, Mantovani A (2008) Cytokines as a key component of cancer-related inflammation. Cytokine 43(3):374–379

    Article  CAS  PubMed  Google Scholar 

  • Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545(7655):495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granchi C, Fancelli D, Minutolo F (2014) An update on therapeutic opportunities offered by cancer glycolytic metabolism. Bioorg Med Chem Lett 24(21):4915–4925

    Article  CAS  PubMed  Google Scholar 

  • Guerra AR, Duarte MF, Duarte IF (2018) Targeting tumor metabolism with plant-derived natural products: emerging trends in cancer therapy. J Agric Food Chem 66(41):10663–10685

    Article  CAS  PubMed  Google Scholar 

  • He X, Du S, Lei T, Li X, Liu Y, Wang H, Tong R, Wang Y (2017) PKM2 in carcinogenesis and oncotherapy. Oncotarget 8(66):110656

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao L, Zhang HL, Li DD, Yang KL, Tang J, Li X, Ji J, Yu Y, Wu RY, Ravichandran S, Liu JJ (2018) Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2 (hexokinase 2). Autophagy 14(4):671–684

    Article  CAS  PubMed  Google Scholar 

  • Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koiri RK, Trigun SK (2011) Dimethyl sulfoxide activates tumor necrosis factorα-p53 mediated apoptosis and down regulates D-fructose-6-phosphate-2-kinase and lactate dehydrogenase-5 in Dalton’s lymphoma in vivo. Leuk Res 35(7):950–956

    Article  CAS  PubMed  Google Scholar 

  • Koiri RK, Trigun SK, Mishra L, Pandey K, Dixit D, Dubey SK (2009) Regression of Dalton’s lymphoma in vivo via decline in lactate dehydrogenase and induction of apoptosis by a ruthenium (II)-complex containing 4-carboxy N-ethylbenzamide as ligand. Investig New Drugs 27(6):503

    Article  CAS  Google Scholar 

  • Koiri RK, Trigun SK, Mishra L (2015) Activation of p53 mediated glycolytic inhibition-oxidative stress-apoptosis pathway in Dalton’s lymphoma by a ruthenium (II)-complex containing 4-carboxy N-ethylbenzamide. Biochimie 110:52–61

    Article  CAS  PubMed  Google Scholar 

  • Koundouros N, Poulogiannis G (2018) Phosphoinositide 3-kinase/Akt signaling and redox metabolism in Cancer. Front Oncol 8:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Wu L, Feng J, Li J, Liu T, Zhang R, Xu S, Cheng K, Zhou Y, Zhou S, Kong R (2016) In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep 6:28479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Jin R, Wang W, Zhang T, Sang J, Li N, Han Q, Zhao W, Li C, Liu Z (2017) STAT3 regulates glycolysis via targeting hexokinase 2 in hepatocellular carcinoma cells. Oncotarget 8(15):24777

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu B, Yu S (2018) Amentoflavone suppresses hepatocellular carcinoma by repressing hexokinase 2 expression through inhibiting JAK2/STAT3 signaling. Biomed Pharmacother 107:243–253

    Article  CAS  PubMed  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Locati M (2016) Macrophage metabolism shapes angiogenesis in tumors. Cell Metab 24(5):653–654

    Article  CAS  PubMed  Google Scholar 

  • Mantovani F, Collavin L, Del Sal G (2019) Mutant p53 as a guardian of the cancer cell. Cell Death Differ 26(2):199–212

    Article  PubMed  Google Scholar 

  • Maurya BK (2018) ROS induced inflammation is key driver of AFB1 induced hepatocellular carcinoma. J Liver Res Disord Ther 4(2):00095

    Article  Google Scholar 

  • Maurya BK, Trigun SK (2016) Fisetin modulates antioxidant enzymes and inflammatory factors to inhibit aflatoxin-B1 induced hepatocellular carcinoma in rats. Oxidative Med Cell Longev 2016:1972793

    Article  CAS  Google Scholar 

  • Maurya BK, Trigun SK (2018) Fisetin attenuates AKT associated growth promoting events in aflatoxinb1 induced hepatocellular carcinoma. Anticancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 18(13):1885–1891

    Article  CAS  Google Scholar 

  • Mishra D, Banerjee D (2019) Lactate dehydrogenases as metabolic links between tumor and stroma in the tumor microenvironment. Cancers 11(6):750

    Article  CAS  PubMed Central  Google Scholar 

  • Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ 13(5):730–737

    Article  CAS  PubMed  Google Scholar 

  • Ngambenjawong C, Gustafson HH, Pun SH (2017) Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 114:206–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelicano H, Martin DS, Xu RA, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Ratter JM, Rooijackers HMM, Hooiveld GJ et al (2018) In vitro and in vivo effects of lactate on metabolism and cytokine production of human primary PBMCs and monocytes. Front Immunol 9:2564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawat D, Chhonker SK, Naik RA, Mehrotra A, Trigun SK, Koiri RK (2019) Lactate as a signaling molecule: journey from dead end product of glycolysis to tumor survival. Front Biosci (Landmark Ed) 24:366–381

    Article  Google Scholar 

  • Reckzeh ES, Karageorgis G, Schwalfenberg M et al (2019) Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth. Cell Chem Biol 26(9):1214–1228

    Article  CAS  PubMed  Google Scholar 

  • Rellinger EJ, Craig BT, Alvarez AL et al (2017) FX11 inhibits aerobic glycolysis and growth of neuroblastoma cells. Surgery 161(3):747–752

    Article  PubMed  Google Scholar 

  • Rojas-Puentes L et al (2016) Epithelial–mesenchymal transition, proliferation, and angiogenesis in locally advanced cervical cancer treated with chemoradiotherapy. Cancer Med 5(8):1989–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safa AR, Day TW, Wu CH (2011) Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy. Curr Cancer Drug Targets 8(1):37–46

    Article  Google Scholar 

  • Santos N, Pereira-Nunes A, Baltazar F, Granja S (2019) Lactate as a regulator of cancer inflammation and immunity. Immunometabolism 1(2):1–18; e190015

    Google Scholar 

  • Seager RJ, Hajal C, Spill F, Kamm RD, Zaman MH (2017) Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Convergent Sci Phys Oncol 3(3):034002

    Article  CAS  Google Scholar 

  • Shankar Babu M, Mahanta S, Lakhter AJ, Hato T, Paul S, Naidu SR (2018) Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One 13(2):e0191419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi L, Pan H, Liu Z, Xie J, Han W (2017) Roles of PFKFB3 in cancer. Signal Transduct Target Ther 2(1):17044

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui FA, Prakasam G, Chattopadhyay S, Rehman AU, Padder RA, Ansari MA, Irshad R, Mangalhara K, Bamezai RN, Husain M, Ali SM (2018) Curcumin decreases Warburg effect in cancer cells by down-regulating pyruvate kinase M2 via mTOR-HIF1α inhibition. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Singh KB, Trigun SK (2013) Apoptosis of Dalton’s lymphoma due to in vivo treatment with emodin is associated with modulations of hydrogen peroxide metabolizing antioxidant enzymes. Cell Biochem Biophys 67(2):439–449

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Maurya BK, Trigun SK (2015) Activation of oxidative stress and inflammatory factors could account for histopathological progression of aflatoxin-B1 induced hepatocarcinogenesis in rat. Mol Cell Biochem 401(1-2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Sonveaux P, Copetti T, De Saedeleer CJ, Végran F, Verrax J, Kennedy KM, Moon EJ, Dhup S, Danhier P, Frérart F, Gallez B (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS One 7(3):e33418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7):579–591

    Article  CAS  PubMed  Google Scholar 

  • Trigun SK, Koiri RK, Mishra L, Dubey SK, Singh S, Pandey P (2007) Ruthenium complex as enzyme modulator: modulation of lactate dehydrogenase by a novel ruthenium (II) complex containing 4-carboxy n-ethylbenzamide as a ligand. Curr Enzym Inhib 3:243

    Article  CAS  Google Scholar 

  • Trigun SK, Koiri RK, Singh KB, Maurya BK, Mishra L (2018) Targeting tumor biochemistry: hope for cancer treatment. In: Cancer medicine 7, 20-20. Wiley, Hoboken

    Google Scholar 

  • Vitale I, Manic G, Coussens LM, Kroemer G, Galluzzi L (2019) Macrophages and metabolism of tumor microenvironment. Cell Metab 30(1):36–50

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhao J, Zhang L et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226(2):352–364

    Article  CAS  PubMed  Google Scholar 

  • Wu WS (2006) The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25(4):695–705

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Hanai J, Ren JG et al (2014) Targeting lactate dehydrogenase – a inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor-initiating cells. Cell Metab 19(5):795–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yashaswee S, Trigun SK (2020) Cytotoxicity and induction of apoptosis in melanoma (MDA-MB-435S) cells by emodin. J Sci Res 64:2

    Google Scholar 

  • Zhao Z, Wang S, Lin Y et al (2017) Epithelial-mesenchymal transition in Cancer: role of the IL-8/IL-8R axis. Oncol Lett 13(6):4577–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S, Zen K (2018) Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep 8(1):1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Maurya, B.K., Pandey, A., Trigun, S.K. (2021). Hyperglycolysis-Inflammation Connect as a Mechanistic Hot Spot in Oxidatively Compromised Cancer. In: Chakraborti, S., Ray, B.K., Roychowdhury, S. (eds) Handbook of Oxidative Stress in Cancer: Mechanistic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-15-4501-6_134-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4501-6_134-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4501-6

  • Online ISBN: 978-981-15-4501-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics