Skip to main content

Procyanidins in Food

  • Reference work entry
  • First Online:
Book cover Handbook of Dietary Phytochemicals

Abstract

Proanthocyanidins (PAs) found in fruits, cereals, beans, nuts, and spices, are colorless, oligomeric, and polymeric plant secondary metabolites formed from flavan-3-ol molecules. The complexity of final structures depends on the hydroxylation pattern, and location and stereochemistry of the interflavan linkage between extension and end units. PAs exert a wide range of biological activities (antidiabetic, anticancer, antithrombotic, beneficial in cardiovascular disorders, urinary tract infections, or ADHD) which were well documented in in vitro assays and in in vivo animal models, but also were verified in clinical studies involving human subjects. Interestingly, only 5–10% of the total ingested PAs are absorbed in the small intestine, the majority undergoing microbiota modifications. Hence, the beneficial effects proved for PAs consumption should be rather attributed to metabolites formed by the colonic microbiota. PAs can be recovered as added value products from food industry wastes like cocoa beans, grapes, tea, strawberries, raspberries, nuts, cranberries, cocoa beans, cinnamon, apples, and apricots being produced in millions of tons each year worldwide. The abundance of PAs and their common occurrence in food products make this group of plant secondary metabolites a very valuable reservoir of active principles which contribute to human wellbeing and health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agouni A, Lagrue-Lak-Hal A, Mostefai HA et al (2009) Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in zucker fatty rats (Fa/Fa). PLoS One 4:e5557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akilen R, Tsiami A, Devendra D, Robinson N (2010) Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: a randomized, placebo-controlled, double-blind clinical trial. Diabet Med 27:1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Altiok E, Ulku S, Bayraktar O (2007) Recovery of proanthocyanidin from waste of Turkish traditional product, pekmez (molasses). Food Sci Technol Res 13:321–326

    Article  CAS  Google Scholar 

  • Anderson RA, Zhan Z, Luo R et al (2015) Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med 6:332–336. https://doi.org/10.1016/j.jtcme.201503.00

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf J, Zulfiqar N, Mohammad AB, Shah Y (2015) Blessings in disguise: bio-functional benefits of grape seed extracts. Food Res Int 77:333–348

    Article  CAS  Google Scholar 

  • Baba S, Osakabe N, Natsume M et al (2001) Absorption and urinary excretion of (–)-epicatechin after administration of different levels of cocoa powder or (–)-epicatechin in rats. J Agric Food Chem 49:6050–6056

    Article  CAS  PubMed  Google Scholar 

  • Badet C (2011) Antibacterial activity of grape (Vitis vinifera, Vitis rotundifolia) seeds in nuts and seeds in health and disease prevention. Academic, London

    Google Scholar 

  • Beikler T (2014) Proanthocyanidin – enriched extract from Rumex acetosa L. as a prophylactic agent against intraoral colonization with Porphyromonas gingivalis. https://clinicaltrials.gov/ct2/show/NCT02039648

  • Belcaro G, Ledda A, Hu S et al (2013) Grape seed procyanidins in pre- and mild hypertension: a registry study. Evid Based Complement Alternat Med 2013:313142. https://doi.org/10.1155/2013/313142

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhagwat S, Haytowitz D (2015) USDA Database for the proanthocyanidin content of selected foods Release 2. Available at: https://data.nal.usda.gov/system/files/PA02.pdf. Accessed 24.08.2018.

  • Boon H, Smith M (2004) The complete natural medicine guide to the 50 most common medicinal herbs. Robert Rose, Toronto

    Google Scholar 

  • Cao WL, Huang HB, Fang L et al (2016) Protective effect of ginkgo proanthocyanidins against cerebral ischemia/reperfusion injury associated with its antioxidant effects. Neural Regen Res 11:1779–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carper J (1998) Miracle cures: dramatic new scientific discoveries revealing the healing power of herbs, vitamins, and other natural remedies. Harper Perennial, New York

    Google Scholar 

  • Choy YY, Waterhouse AL (2014) Proanthocyanidin metabolism, a mini review. Nutr Aging 2:111–116

    Article  CAS  Google Scholar 

  • Choy YY, Jaggers GK, Oteiza PI, Waterhouse AL (2013) Bioavailability of intact proanthocyanidins in the rat colon after ingestion of grape seed extract. J Agric Food Chem 61:121–127

    Article  CAS  PubMed  Google Scholar 

  • Cos P, Bruyne TD, Hermans N et al (2003) Proanthocyanidins in health care: current and new trends. Curr Med Chem 10:1345–1359

    Google Scholar 

  • Cui YY, Xie H, Qi KB, He YM, Wang JF (2005) Effects of Pinus massoniana bark extract on cell proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 11:5277–5282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea G (2010) Pycnogenol: a blend of procyanidins with multifaceted therapeutic applications? Fitoterapia 81:724–736

    Article  PubMed  CAS  Google Scholar 

  • D’Souzaa RN, Grimbsa S, Behrendsa B, Bernaertb H, Ullricha MS, Kuhnerta N (2017) Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Res Int 99:550–559

    Article  CAS  Google Scholar 

  • Danoux L, Henry F, Pauly G (2002) Verwendung von oligomeren Procyanolidinen (Use of procyanidine oligomers). EPO patent EP 1 256 335 A1, 13 Nov 2002

    Google Scholar 

  • de Freitas V, Mateus N (2001) Structural features of procyanidin interactions with salivary proteins. J Agric Food Chem 49:940–945

    Article  PubMed  CAS  Google Scholar 

  • De Palma R, Sotto I, Wood EG et al (2016) Cocoa flavanols reduce N-terminal pro-B-type natriuretic peptide in patients with chronic heart failure. ESC Heart Fail 3:97–106

    Article  PubMed  Google Scholar 

  • Dillinger TL, Barriga P, Escarcega S, Jimenez M, Salazar Lowe D, Grivetti LE (2000) Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J Nutr 130:2057S–7072S

    Article  CAS  PubMed  Google Scholar 

  • Donovan JL, Manach C, Rios L, Morand C, Scalbert A, Rémésy C (2002) Procyanidins are not bioavailable in rats fed a single meal containing a grape seed extract or the procyanidin dimer B3. Br J Nutr 87:299–306

    Google Scholar 

  • Dorenkott MR, Griffin LE, Goodrich KM, Thompson-Witrick KA, Fundaro G, Ye L, Stevens JR, Ali M, O’Keefe SF, Hulver MW, Neilson AP (2014) Oligomeric cocoa procyanidins possess enhanced bioactivity compared to monomeric and polymeric cocoa procyanidins for preventing the development of obesity, insulin resistance, and impaired glucose tolerance during high-fat feeding. J Agric Food Chem 62:2216–2227

    Article  CAS  PubMed  Google Scholar 

  • Engemann A, Hübner F, Rzeppa S, Humpf HU (2012) Intestinal metabolism of two a-type procyanidins using the pig cecum model: detailed structure elucidation of unknown catabolites with Fourier transform mass spectrometry (FTMS). J Agric Food Chem 60:749–757

    Article  CAS  PubMed  Google Scholar 

  • Engström MT, Pälijärvi M, Fryganas C, Grabber HG, Mueller-Harvey I, Salminen JP (2014) Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J Agric Food Chem 62:3390–3399

    Article  PubMed  CAS  Google Scholar 

  • Esatbeyoglu T, Wray V, Winterhalter P (2015) Isolation of dimeric trimeric, tetrameric and pentameric procyanidins from unroasted cocoa beans (Theobroma cacao L.) using countercurrent chromatography. Food Chem 179:278–289

    Article  CAS  PubMed  Google Scholar 

  • Foo JY, Lu Y, Howell AB, Vorsa N (2000) The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54:173–181

    Article  CAS  PubMed  Google Scholar 

  • Foxman B, Cronenwett AE, Spino C, Berger MB, Morgan DM (2015) Cranberry juice capsules and urinary tract infection after surgery: results of a randomized trial. Am J Obstet Gynecol 213:194.e1–194.e8. https://doi.org/10.1016/j.ajog.2015.04.003

    Article  Google Scholar 

  • Girard AL, Awika JL (2018) Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J Cereal Sci 84:112–124

    Article  CAS  Google Scholar 

  • Gonthier MP, Donovan JL, Texier O et al (2003) Metabolism of dietary procyanidins in rats. Free Radic Biol Med 35:837–844

    Article  CAS  PubMed  Google Scholar 

  • González-Abuín N, Pinent M, Casanova-Martí A et al (2015) Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem 22:39–50

    Article  PubMed  CAS  Google Scholar 

  • Grether-Beck S, Marini A, Jaenicke T, Krutmann J (2015) French Maritime Pine Bark extract (Pycnogenol®) effects on human skin: clinical and molecular evidence. Skin Pharmacol Physiol 29:13–17

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Gebhardt S, Prior RL (2001) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134:613–617

    Article  Google Scholar 

  • Gunawardena D, Govindaraghavan S, Munch G (2014) Anti-inflammaotry properties of cinnamon polyphenols and their monomeric precursors. In: Watson RR, Preedy V, Zibadi S (eds) Polyphenols in human health and disease. Elsevier, Oxford

    Google Scholar 

  • Hamilton K, Bennett NC, Purdie G, Herst PM (2015) Standardized cranberry capsules for radiation cystitis in prostate cancer patients in New Zealand: a randomized double blinded, placebo-controlled pilot study. Support Care Cancer 23:95–102

    Article  PubMed  Google Scholar 

  • Hammerstone JF, Chimel MJ (2003) Method for extracting cocoa procyanidins. US patent 6,627,232 B1, 30 Sept 2003

    Google Scholar 

  • Haytowitz D, Wu X, Bhagwat S (2018) USDA Database for the proanthocyanidin content of selected foods Release 2.1. https://www.ars.usda.gov/ARSUserFiles/80400525/Data/PA/PA02-1.pdf. Accessed 24 Aug 2018

  • He F, Pan QH, Shi Y, Duan CQ (2008) Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13:2674–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimann SW (1999) Pycnogenol for ADHD? J Am Acad Child Adolesc Psychiatry 38:357–358

    Article  CAS  PubMed  Google Scholar 

  • Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W (2006) Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J Nutr 136:1565–1569

    Article  CAS  PubMed  Google Scholar 

  • Heiss C, Kelm M (2016) Investigation on the effects of cocoa procyanidins on vascular function in healthy individuals. https://clinicaltrials.gov/ct2/show/NCT02728466

  • Holt RR, Lazarus SA, Sullards MC et al (2002) Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 76:798–804

    Article  CAS  PubMed  Google Scholar 

  • Howard LR, White BL, Prior RL (2012) Process of extracting procyanidins by alkaline hydrolysis. US patent 8,337,909 B2, 25 Dec 2012

    Google Scholar 

  • Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281–2291

    Article  CAS  PubMed  Google Scholar 

  • Ibars M, Ardid-Ruiz A, Suárez M et al (2017) Proanthocyanidins potentiate hypothalamic leptin/STAT3 signalling and Pomc gene expression in rats with diet-induced obesity. Int J Obes 41:129–136

    Article  CAS  Google Scholar 

  • Jeong JY, Seol KH, Seong PN, Park BY, Kim HW (2015) Effects of procyanidin on meat quality and shelf-life for preserving pork patties during chilled storage. J Food Sci Anim Resour 35:564–571

    Article  Google Scholar 

  • Jerez M, Selga A, Sineiro J, Torres JL, Núñez MJ (2007) A comparison between bark extracts from Pinus pinaster and Pinus radiata: antioxidant activity and procyanidin composition. Food Chem 100:439–444

    Article  CAS  Google Scholar 

  • Jessberger S, Högger P, Genest F et al (2017) Cellular pharmacodynamic effects of Pycnogenol® in patients with severe osteoarthritis: a randomized controlled pilot study. BMC Complement Altern Med 17:537. https://doi.org/10.1186/s12906-017-2044-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Leng Q, Li C (2012) Dietary flavonoid for preventing colorectal neoplasms. Cochrane Database Syst Rev 8:CD009350. https://doi.org/10.1002/14651858.CD009350.pub2

    Article  Google Scholar 

  • Kahle K, Kempf M, Schreier P et al (2011) Intestinal transit and systemic metabolism of apple polyphenols. Eur J Nutr 2011(50):507–522

    Google Scholar 

  • Katz DL, Doughty K, Ali A (2011) Cocoa and chocolate in human health and disease. Antioxid Redox Signal 15:2779–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan NQ, Shahbaz PB, Sukhjit SK et al (2015) Regulation of vascular endothelial function by red wine procyanidins: implications for cardiovascular health. Tetrahedron 71:3059–3065

    Article  CAS  Google Scholar 

  • Khanbabaee K, Van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  CAS  PubMed  Google Scholar 

  • Kim SM, Kang SW, Jeon JS, Um BH (2012) A comparison of Pycnogenol® and bark extracts from Pinus thunbergii and Pinus densiflora: extractability, antioxidant activity and proanthocyanidin composition. J Med Plant Res 6:2839–2849

    Article  Google Scholar 

  • Kolodziejczyk K, Markowski J, Kosmala M, Król B, Płocharski W (2007) Apple pomace as a potential source of nutraceutical products. Pol J Food Nutr Sci 57:291–295

    Google Scholar 

  • Kontiokari T, Sundqvist K, Nuutinen M, Pokka T, Koskela M, Uhari M (2001) Randomised trial of cranberry-lingonberry juice and Lactobacillus GG drink for the prevention of urinary tract infections in women. BMJ 322:1571. https://doi.org/10.1136/bmj.322.7302.1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroon PD (2016) The effects of apple derived flavanols on cardiovascular disease risk. https://clinicaltrials.gov/ct2/show/NCT02013856

  • Kwon O, Eck P, Chen S et al (2007) Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB J 21:366–377

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Cho E, Tanaka T, Yokozawa T (2007) Inhibitory activities of proanthocyanidins from persimmon against oxidative stress and digestive enzymes related to diabetes. J Nutr Sci Vitaminol 53:287–292

    Article  CAS  PubMed  Google Scholar 

  • Leonetti D, Soleti R, Clere N et al (2018) Extract enriched in flavan-3-ols and mainly procyanidin dimers improves metabolic alterations in a mouse model of obesity-related disorders partially via estrogen receptor alpha. Front Pharmacol 9:406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li XH, Xiao YL, Gao HQ et al (2009) Grape seed proanthocyanidins ameliorate diabetic nephropathy via modulation of levels of AGE, RAGE and CTGF. Nephron Exp Nephrol 111:E31–E41

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Feng J, Zhang XL, Cui YY (2015) Pine bark extracts: nutraceutical, pharmacological, and toxicological evaluation. J Pharmacol Exp Ther 353:9–16

    Article  CAS  PubMed  Google Scholar 

  • Liu SX, White E (2012) Extraction and characterization of proanthocyanidins from grape seeds. Open Food Sci J 6:5–11

    Article  CAS  Google Scholar 

  • Lluís L, Muñoz M, Nogués MR, Sánchez-Martos V, Romeu M, Giralt M, Valls J, Solà R (2001) Toxicology evaluation of a procyanidin-rich extract from grape skins and seeds. Food Chem Toxicol 49:1450–1454

    Google Scholar 

  • Luo L, Cui Y, Cheng J, Fang B, Wei Z, Sun B (2018) An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid. Food Chem 256:203–211

    Article  CAS  PubMed  Google Scholar 

  • Mang B, Wolters M, Schmitt M et al (2006) Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur J Clin Investig 36:340–344

    Article  CAS  Google Scholar 

  • Maritim A, Dene BA, Sanders RA, Watkins JB III (2003) Effects of pycnogenol treatment on oxidative stress in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 17:193–199

    Article  CAS  PubMed  Google Scholar 

  • Masquelier J (1987) Plant extract with a proanthocyanidins content as therapeutic agent having radical scavenger effect and use thereof. US Patent 4,698,360, 6 Oct 1987

    Google Scholar 

  • Mateos-Martín ML, Fuguet E, Quero C, Pérez-Jiménez J, Torres JL (2012) New identification of proanthocyanidins in cinnamon (Cinnamomum zeylanicum L.) using MALDI-TOF/TOF mass spectrometry. Anal Bioanal Chem 402:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • McKay DL, Blumberg JB (2007) Cranberries (Vaccinium macrocarpon) and cardiovascular disease risk factors. Nutr Rev 65:490–502

    Article  PubMed  Google Scholar 

  • Mittal A, Elmets CA, Katiyar SK (2003) Dietary feeding of proanthocyanidins from grape seeds prevents photocarcinogenesis in SKH-1 hairless mice: relationship to decreased fat and lipid peroxidation. Carcinogenesis 24:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Montagut G, Onnockx S, Vaque M et al (2009) Oligomers of grape-seed procyanidin extract activate the insulin receptor and key targets of the insulin signaling pathway differently from insulin. J Nutr Biochem 21:476–481

    Article  PubMed  CAS  Google Scholar 

  • Nuttall SL, Kendall MJ, Bombardelli E, Morazzoni P (1998) An evaluation of the antioxidant activity of a standardized grape seed extract, Leucoselect. J Clin Pharm Ther 23:385–389

    Article  CAS  PubMed  Google Scholar 

  • Osakabe N, Yamagishi M (2009) Procyanidins in Theobroma cacao reduce plasma cholesterol levels in high cholesterol-fed rats. J Clin Biochem Nutr 45:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottaviani JI, Momma TY, Kuhnle GK et al (2012) Structurally related (−)-epicatechin metabolites in humans: assessment using de novo chemically synthesized authentic standards. Free Radic Biol Med 52:1403–1412

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani JI, Balz B, Kimball J et al (2015) Safety and efficacy of cocoa flavanol intake in healthy adults: a randomized, controlled, double-masked trial. Am J Clin Nutr 102:1425–1435

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani JI, Heiss C, Spencer JPE et al (2018) Recommending flavanols and procyanidins for cardiovascular health: revisited. Mol Asp Med 61:63–75

    Article  CAS  Google Scholar 

  • Passwater RA (1991) Pycnogenol (proanthocyanidins). Whole Foods Mag 3:83–98

    Google Scholar 

  • Pinent M, Cedo L, Montagut G et al (2012) Procyanidins improve some disrupted glucose homoeostatic situations: an analysis of doses and treatments according to different animal models. Crit Rev Food Sci Nutr 52:569–584

    Article  CAS  PubMed  Google Scholar 

  • Poussard S, Pires-Alves A, Diallo R et al (2013) A natural antioxidant pine bark extract, Oligopin®, regulates the stress chaperone HSPB1 in human skeletal muscle cells: a proteomics approach. Phytother Res 27:1529–1535

    CAS  PubMed  Google Scholar 

  • Prior RL, Gu L (2005) Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 66:2264–2280

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Bagchi D, Lim PM et al (2001) Acute and long-term safety evaluation of a novel IH636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol 109:165–197

    CAS  PubMed  Google Scholar 

  • Rios LY, Bennett RN, Lazarus SA et al (2002) Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 76:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Mateos A, Cifuentes-Gomez T, George TW, Spencer JPE (2014) Impact of cooking, proving, and baking on the (poly)phenol content of wild blueberry. J Agric Food Chem 62:3979–3986

    Article  CAS  PubMed  Google Scholar 

  • Rohdewald P, Ferrari V (2003) Relieving symptoms of erectile dysfunction with proanthocyanidins. US patent 6,565,851 B2, 20 May 2003

    Google Scholar 

  • Rossi M, Edefonti V, Parpinel M et al (2013) Proanthocyanidins and other flavonoids in relation to endometrial cancer risk: a case–control study in Italy. Br J Cancer 109:1914–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rull PS, Alaoui IS, Fabry B (2004) Litchi sinensis extracts containing oligomeric proanthocyanidins, WIPO patent WO2004/112813 A1, 29 Dec 2004

    Google Scholar 

  • Sano A (2017) Safety assessment of 4-week oral intake of proanthocyanidin-rich grape seed extract in healthy subjects. Food Chem Toxicol 108:519–523

    Article  CAS  PubMed  Google Scholar 

  • Santos-Buelga C, González-Manzano S (2011) Wine and health relationships: a question of moderation? Cienc Tec Vitivinic 26:33–44

    Google Scholar 

  • Santos-Buelga C, Scalbert A (2000) Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 80:1094–1117

    Article  CAS  Google Scholar 

  • Schmitz HH, Kwik-Uribe CL (2007) A-type procyanidins and COX-2 expression. WIPO patent WO 2007/053639 A2, 10 May 2007

    Google Scholar 

  • Schmitz HH, Kwik-Uribe CL, Kelm MA, Hammerstone JF (2017) Compositions and methods of use of a-type procyanidins. US patent 9,675,630 B2, 13 June 2017

    Google Scholar 

  • Schroeter H, Heiss C, Spencer JPE et al (2010) Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol Asp Med 31:546–557

    Article  CAS  Google Scholar 

  • Segal L, Penman MG, Piriou Y (2018) Evaluation of the systemic toxicity and mutagenicity of OLIGOPIN®, procyanidolic oligomers (OPC) extracted from French Maritime Pine Bark extract. Toxicol Rep 5:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra A, Macià A, Romero MP et al (2011) Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids. Food Chem 126:1127–1137

    Article  CAS  Google Scholar 

  • Shoji T, Masumoto S, Moriichi N et al (2006) Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 54:884–892

    Article  CAS  PubMed  Google Scholar 

  • Sieniawska E, Baj T (2016) Tannins. In: Badal S, Delgoda R (ed) Pharmacognosy: fundamentals, applications and strategy. Elsevier Science\Academic Press, London, pp 199–232

    Google Scholar 

  • Soulier C, Monton V, Alcouffe N, Laplaige G (2012) Extracts rich in proanthocyanidins and relating process of preparation. US Patent 8,287.933 B2, 16 Oct 2012

    Google Scholar 

  • Spencer JP, Chaudry F, Pannala AS et al (2000) Decomposition of cocoa procyanidins in the gastric milieu. Biochem Biophys Res Commun 272:236–241

    Article  CAS  PubMed  Google Scholar 

  • Spencer JPE, Schroeter H, Rechner AR, Rice-Evans C (2001) Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal 3:1023–1039

    Article  CAS  PubMed  Google Scholar 

  • Stahl L, Miller KB, Apgar J et al (2009) Preservation of cocoa antioxidant activity, total polyphenols, flavan-3-ols, and procyanidin content in foods prepared with cocoa powder. J Food Sci 74:C456–C461

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MK (2002) The globalization of a ceremonial tree: the case of cacao (Theobroma cacao) among the Mopan Maya. Econ Bot 56:58–65

    Article  Google Scholar 

  • Sun Y, Xiu C, Liu W et al (2016) Grape seed proanthocyanidin extract protects the retina against early diabetic injury by activating the Nrf2 pathway. Exp Ther Med 11:1253–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I (2001) Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J Agric Food Chem 49:5843–5847

    Article  CAS  PubMed  Google Scholar 

  • Teixeira A, Baenas N, Dominguez-Perles R, Barros A, Rosa E, Moreno DA, Garcia-Viguera C (2014) Natural bioactive compounds from winery by-products as health promoters: a review. Int J Mol Sci 15:15638–15678. https://doi.org/10.3390/ijms150915638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodoratou E, Kyle J, Cetnarskyj R et al (2007) Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomark Prev 16(4):684–693

    Article  CAS  Google Scholar 

  • Tian H, Sun W, Zhang Q et al (2018) Procyanidin B2 mitigates behavioral impairment and protects myelin integrity in cuprizone-induced schizophrenia in mice. RSC Adv 8:23835–23846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebaticka J, Kopasova S, Hradecna Z, Cinovsky K (2006) Treatment of ADHD with French maritime bark extract, Pycnogenol. Eur Child Adolesc Psychiatry 15:329–335

    Article  PubMed  Google Scholar 

  • Tsuchiya H, Sato M, Kato H, Okubo T, Juneja LR, Kim M (1997) Simultaneous determination of catechins in human saliva by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 703:253–258

    Article  CAS  PubMed  Google Scholar 

  • Turck D, Bresson JL, Burlingame B et al (2017) Safety of cranberry extract powder as a novel food ingredient pursuant to regulation (EC) no 258/97. EFSA J 15:4777. https://doi.org/10.2903/j.efsa.2017.4777.

    Article  Google Scholar 

  • Valentova K, Stejskal D, Bednar P (2007) Biosafety, antioxidant status, and metabolites in urine after consumption of dried cranberry juice in healthy women: a pilot double-blind placebo-controlled trial. J Agric Food Chem 55:3217–3224

    Article  CAS  PubMed  Google Scholar 

  • Valls RM, Sola R (2014) Effect of a French Maritim Pine Bark extract Oligopin® on blood pressure: double blind, crossover, placebo-controlled nutrition intervention trial. https://clinicaltrials.gov/ct2/show/NCT02063477

  • Valls RM, Llauradó E, Fernández-Castillejo S et al (2016) Effects of low molecular weight procyanidin rich extract from french maritime pine bark on cardiovascular disease risk factors in stage-1 hypertensive subjects: randomized, double-blind, crossover, placebo-controlled intervention trial. Phytomedicine 23:1451–1461

    Article  CAS  PubMed  Google Scholar 

  • Vanschoonbeek K, Thomassen BJ, Senden JM et al (2006) Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 136:977–980

    Article  CAS  PubMed  Google Scholar 

  • Venkatramesh M, Wagner DR, Lall S, Lejard FY, Yoon SYH (2013) Production and extraction of procyanidins from plant cell cultures. US patent 8,568,798 B2, 29 Oct 2013

    Google Scholar 

  • Wallace TC (2010) Analysis of procyanidins and anthocyanins in food products using chromatographic and spectroscopic techniques. Doctoral dissertation, The Ohio State University

    Google Scholar 

  • Wan KS, Liu CK, Lee WK, Ko MC, Huang CS (2016) Cranberries for preventing recurrent urinary tract infections in uncircumcised boys. Altern Ther Health Med 22:20–23

    PubMed  Google Scholar 

  • Weseler AR, Bast A (2017) Masquelier’s grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits. Nutr J 16:5. https://doi.org/10.1186/s12937-016-0218

    Article  PubMed  PubMed Central  Google Scholar 

  • Wika JMA, Dykes L, Gu L, Rooney LW, Rior RLP (2003) Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. J Agric Food Chem 51:5516–5521

    Article  CAS  Google Scholar 

  • Williamson G, Clifford MN (2017) Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem Pharmacol 139:24–39

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Natsume M, Osakabe N et al (2002) Effects of cacao liquor proanthocyanidins on PhIP-induced mutagenesis in vitro, and in vivo mammary and pancreatic tumorigenesis in female Sprague–Dawley rats. Cancer Lett 185:123–130

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Natsume M, Osakabe N et al (2003) Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Lett 191:49–57

    Article  CAS  PubMed  Google Scholar 

  • Yamakoshi J, Saito M, Kataoka S, Kikuchi M (2002a) Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food Chem Toxicol 40:599–607

    Article  CAS  PubMed  Google Scholar 

  • Yamakoshi J, Saito M, Kataoka S, Tokutake S (2002b) Procyanidin-rich extract from grape seeds prevents cataract formation in hereditary cataractous (ICR/f) rats. J Agric Food Chem 50:4983–4988

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Yoshino F, Tsubata M, Ikeguchi M, Nakamura T, Lee MC (2011) Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice. J Clin Biochem Nutr 49:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanotti I, Dall’Asta M, Mena P, Mele L, Bruni R, Ray S, Del Rio D (2015) Atheroprotective effects of (poly)phenols: a focus on cell cholesterol metabolism. Food Funct 6:13–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Shi H, Wang W et al (2011) Antithrombotic effect of grape seed proanthocyanidins extract in a rat model of deep vein thrombosis. J Vasc Surg 53:743–753

    Article  PubMed  Google Scholar 

  • Zhang L, Wang Y, Li D et al (2016) The absorption, distribution, metabolism and excretion of procyanidins. Food Funct 7:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Zhu QY, Holt RR, Lazarus SA et al (2002) Stability of the flavan-3-ols epicatechin and catechin and related dimeric procyanidins derived from cocoa. J Agric Food Chem 50:1700–1705

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World. University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

AO, IF, and RCF gratefully acknowledge the support obtained through the projects SusMAPWaste, SMIS 104323, Contract No. 89/09.09.2016, from the Operational Program Competitiveness 2014-2020, project co-financed from the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elwira Sieniawska , Alina Ortan , Irina Fierascu or Radu Claudiu Fierascu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sieniawska, E., Ortan, A., Fierascu, I., Fierascu, R.C. (2021). Procyanidins in Food. In: Xiao, J., Sarker, S.D., Asakawa, Y. (eds) Handbook of Dietary Phytochemicals. Springer, Singapore. https://doi.org/10.1007/978-981-15-4148-3_43

Download citation

Publish with us

Policies and ethics