Skip to main content

Rice Tolerance to Multiple Abiotic Stress: Genomics and Genetic Engineering

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Changing environment has a huge impact on bio-resources and global agriculture. Abiotic stress factors are dramatically increasing along with these uncontrolled environmental changes. Rice (Oryza sativa) is the most important crop providing food toward more than half of the world populations, and India is one of the major rice growing country. This important crop plant experiences massive yield loss due to abiotic out-lashes, e.g., salinity, drought, heat stress, cold shock, UV damage, and mineral toxicity. The sessile nature of plants make them easy targets of several environmental odds, but long-term evolutionary interaction of plants with environment in turn shapes reprogramming of its defense signaling networks tightly. The subtle changes in the environment can be sensed by the plant very efficiently and are portrayed by their genetic orchestrations. Due to enormous development in modern genomics, technologies, and biotechnological applications, the minute changes in gene expression and modification of metabolic functions can now be precisely recorded. Besides, complex modulations in metabolic network through biotechnology are implicated to overcome the situations in a positive way. Studies focusing on specific abiotic stress and its protection have long been implicated in different plants including rice. Unfortunately, growing yield loss in rice due to multiple abiotic stress factors supersedes increasing demand of this crop. Recently, a versatile approach has been flourished to meet the yield–demand ratio against multiple abiotic stresses. The present chapter describes various important abiotic stresses in rice plants, their complex defense signaling mechanism, and recent developments to combat these multiple stress factors comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S (2004) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol 55(4):541–552

    Article  CAS  Google Scholar 

  • Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294(5):1009–1016

    Article  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (eds) (2011) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York

    Google Scholar 

  • Alcázar R, Tiburcio AF (2018) Polyamine metabolism and abiotic stress tolerance in plants. In: Metabolic adaptations in plants during abiotic stress. CRC Press, Boca Raton, pp 191–203

    Chapter  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011) Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Mol Biol 75(1–2):179–191

    Article  CAS  Google Scholar 

  • Ashraf MA, Akbar A, Askari SH, Iqbal M, Rasheed R, Hussain I (2018) Recent advances in abiotic stress tolerance of plants through chemical priming: an overview. In: Advances in seed priming. Springer, Singapore, pp 51–79

    Chapter  Google Scholar 

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, Singh RK (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6(1):11

    Article  Google Scholar 

  • Banerjee A, Roychoudhury A (2017) Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress. Protoplasma 254:3–16

    CAS  Google Scholar 

  • Banerjee A, Roychoudhury A (2018) Abiotic stress, generation of reactive oxygen species, and their consequences: an overview. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (eds) Reactive oxygen species in plants: boon or bane? Revisiting the role of ROS, 1st edn. Wiley, Chichester, pp 23–50

    Google Scholar 

  • Basu S, Roychoudhury A (2014) Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance. BioMed Res Int 2014:706890

    Article  CAS  Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47(2):507–516

    Article  Google Scholar 

  • Bhar A, Gupta S, Chatterjee M, Das S (2017) Redox regulatory networks in response to biotic stress in plants: a new insight through Chickpea-Fusarium interplay. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress, vol 2, pp 23–43. https://doi.org/10.1002/9781118889022.ch20

  • Bindusree G, Natarajan P, Kalva S, Madasamy P (2017) Whole genome sequencing of Oryza sativa L. cv. Seeragasamba identifies a new fragrance allele in rice. PLoS One 12(11):e0188920

    Article  CAS  Google Scholar 

  • Cao XQ, Jiang ZH, Yi YY, Yang Y, Ke LP, Pei ZM, Zhu S (2017) Biotic and abiotic stresses activate different Ca2+ permeable channels in Arabidopsis. Front Plant Sci 8:83

    Google Scholar 

  • Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128(9):1647–1667

    Article  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30(12):2191–2198

    Article  CAS  Google Scholar 

  • Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK, Lin Q (2013) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol 163(4):1752–1765

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49(12):1384–1391

    Article  CAS  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Google Scholar 

  • Dukhovskis P, Juknys R, Brazaityte A, Zukauskaite I (2003) Plant response to integrated impact of natural and anthropogenic stress factors. Russ J Plant Physiol 50(2):147–154

    Article  CAS  Google Scholar 

  • El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS One 7(12):e52030

    Article  CAS  Google Scholar 

  • Eynard A, Lal R, Wiebe K (2005) Crop response in salt-affected soils. J Sustain Agric 27(1):5–50

    Article  Google Scholar 

  • Feng L, Gao Z, Xiao G, Huang R, Zhang H (2014) Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA-responsive genes in rice. Plant Mol Biol Report 32(6):1158–1168

    Article  CAS  Google Scholar 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147(1):15–27

    Article  CAS  Google Scholar 

  • Gao F, Xiong A, Peng R, Jin X, Xu J, Zhu B, Chen J, Yao Q (2010) OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. Plant Cell Tiss Organ Cult 100(3):255–262

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99(25):15898–15903

    Article  CAS  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66(1):117–127

    Article  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  Google Scholar 

  • Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126(1):363–375

    Article  CAS  Google Scholar 

  • Greeff CC, Roux MM, Mundy JJ, Petersen MM (2012) Receptor-like kinase complexes in plant innate immunity. Front Plant Sci 3:209

    Google Scholar 

  • Grennan AK (2006) Abiotic stress in rice. An “omic” approach. Plant Physiol 140(4):1139–1141

    Article  CAS  Google Scholar 

  • Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415(1–2):1–12

    Article  CAS  Google Scholar 

  • Guan JC, Jinn TL, Yeh CH, Feng SP, Chen YM, Lin CY (2004) Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol Biol 56(5):795–809

    Article  CAS  Google Scholar 

  • Guo Z, Ou WZ, Lu SY, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44(11–12):828–836

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596

    Article  CAS  Google Scholar 

  • Han QH, Huang B, Ding CB, Zhang ZW, Chen YE, Hu C, Zhou LJ, Huang Y, Liao JQ, Yuan S, Yuan M (2017) Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front Plant Sci 8:785

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    CAS  Google Scholar 

  • Hoang TM, Moghaddam L, Williams B, Khanna H, Dale J, Mundree SG (2015) Development of salinity tolerance in rice by constitutive-overexpression of genes involved in the regulation of programmed cell death. Front Plant Sci 6:175

    Article  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  Google Scholar 

  • Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72(4–5):557–566

    Article  CAS  Google Scholar 

  • Hossain MA, Li ZG, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S (2018) Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255(1):399–412

    Article  CAS  Google Scholar 

  • Hu W, Hu G, Han B (2009) Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci 176(4):583–590

    Article  CAS  Google Scholar 

  • Hu Y, Wu Q, Peng Z, Sprague SA, Wang W, Park J, Akhunov E, Jagadish KS, Nakata PA, Cheng N, Hirschi KD (2017) Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Sci Rep 7(1):15950

    Article  CAS  Google Scholar 

  • Huang S, Monaghan J, Zhong X, Lin L, Sun T, Dong OX, Li X (2014) HSP 90s are required for NLR immune receptor accumulation in Arabidopsis. Plant J 79(3):427–439

    Article  CAS  Google Scholar 

  • Huynh BL, Ehlers JD, Huang BE, Muñoz-Amatriaín M, Lonardi S, Santos JR, Ndeve A, Batieno BJ, Boukar O, Cisse N, Drabo I (2018) A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant J 93(6):1129–1142

    Article  CAS  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24(5):655–665

    Article  CAS  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat‐shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15(4):405–414

    Google Scholar 

  • Jacobsen E, Nataraja KN (2008) Cisgenics-facilitating the second green revolution in India by improved traditional plant breeding. Curr Sci 94(1):1365–1366

    Google Scholar 

  • Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:375

    Article  Google Scholar 

  • Jangam AP, Pathak RR, Raghuram N (2016) Microarray analysis of rice d1 (RGA1) mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat, and cold. Front Plant Sci 7:11

    Article  Google Scholar 

  • Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho WS, Park YT, Lee JO, Kwon HB, Byun MO, Park SC (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ Cult 85(2):151–160

    Article  CAS  Google Scholar 

  • Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R (2015) Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One 10(6):e0127831

    Article  CAS  Google Scholar 

  • Jogawat A, Vadassery J, Verma N, Oelmüller R, Dua M, Nevo E, Johri AK (2016) PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants. Sci Rep 6:36765

    Article  CAS  Google Scholar 

  • Kakar K, Xuan TD, Haqani MI, Rayee R, Wafa IK, Abdiani S, Tran HD (2019) Current situation and sustainable development of Rice cultivation and production in Afghanistan. Agriculture 9(3):49

    Article  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14(2):343–357

    Article  CAS  Google Scholar 

  • Kang J, Li J, Gao S, Tian C, Zha X (2017) Overexpression of the leucine-rich receptor-like kinase gene LRK 2 increases drought tolerance and tiller number in rice. Plant Biotechnol J 15(9):1175–1185

    Article  CAS  Google Scholar 

  • Kaur G, Pati PK (2018) In silico insights on diverse interacting partners and phosphorylation sites of respiratory burst oxidase homolog (Rbohs) gene families from Arabidopsis and rice. BMC Plant Biol 18(1):161

    Article  CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59(1):1–6

    Article  CAS  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207

    Article  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2018) Trehalose: a key organic Osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:1–13

    Google Scholar 

  • Koziol L, Rieseberg LH, Kane N, Bever JD (2012) Reduced drought tolerance during domestication and the evolution of weediness results from tolerance–growth trade-offs. Evolution 66(12):3803–3814

    Article  Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44(2):229–255

    Article  CAS  Google Scholar 

  • Kumar K, Rao KP, Sharma P, Sinha AK (2008) Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46(10):891–897

    Article  CAS  Google Scholar 

  • Kumar V, Singh A, Mithra SA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2):133–145

    Article  CAS  Google Scholar 

  • Kurusu T, Kuchitsu K, Tada Y (2015) Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Front Plant Sci 6:427

    Article  Google Scholar 

  • Latha GM, Mohapatra T, Geetanjali AS, Rao KRS (2017) Engineering rice for abiotic stress tolerance: a review. Curr Trends Biotechnol Pharm 11(4):396–413

    Google Scholar 

  • Li WG, Komatsu S (2000) Cold stress-induced calcium-dependent protein kinase(s) in rice (Oryza sativa L.) seedling stem tissues. Theor Appl Genet 101(3):355–363

    Article  CAS  Google Scholar 

  • Li CH, Wang G, Zhao JL, Zhang LQ, Ai LF, Han YF, Sun DY, Zhang SW, Sun Y (2014) The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26(6):2538–2553

    Article  CAS  Google Scholar 

  • Li T, Ali J, Marcaida M III, Angeles O, Franje NJ, Revilleza JE, Manalo E, Redoña E, Xu J, Li Z (2016) Combining limited multiple environment trials data with crop modeling to identify widely adaptable rice varieties. PLoS One 11(10):e0164456

    Article  CAS  Google Scholar 

  • Li S, Yu X, Cheng Z, Yu X, Ruan M, Li W, Peng M (2017) Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Front Plant Sci 8:1259

    Article  Google Scholar 

  • Lim CW, Yang SH, Shin KH, Lee SC, Kim SH (2015) The AtLRK10L1. 2, Arabidopsis ortholog of wheat LRK10, is involved in ABA-mediated signaling and drought resistance. Plant Cell Rep 34(3):447–455

    Article  CAS  Google Scholar 

  • Liu D, Zhang X, Cheng Y, Takano T, Liu S (2006) rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol Biochem 44(5–6):380–386

    Article  CAS  Google Scholar 

  • Liu XL, Zhang H, Jin YY, Wang MM, Yang HY, Ma HY, Jiang CJ, Liang ZW (2019) Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil 438:39–55

    Article  CAS  Google Scholar 

  • Lv Y, Guo Z, Li X, Ye H, Li X, Xiong L (2016) New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ 39(3):556–570

    Article  CAS  Google Scholar 

  • Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J (2015) COLD1 confers chilling tolerance in rice. Cell 160(6):1209–1221

    Article  CAS  Google Scholar 

  • Ma X, Feng F, Wei H, Mei H, Xu K, Chen S et al (2016) Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front Plant Sci 7:1801

    Google Scholar 

  • Mackill DJ, Collard BCY, Neeraja CN, Rodriguez RM, Heuer S, Ismail AM (2007) QTLs in rice breeding: examples for abiotic stresses. In: Rice genetics V. World Scientific Publishing, Hackensack, pp 155–167

    Chapter  Google Scholar 

  • Mangrauthia SK, Agarwal S, Sailaja B, Sarla N, Voleti SR (2016) Transcriptome analysis of Oryza sativa (rice) seed germination at high temperature shows dynamics of genome expression associated with hormones signalling and abiotic stress pathways. Trop Plant Biol 9(4):215–228

    Article  CAS  Google Scholar 

  • Markkandan K, Yoo SI, Cho YC, Lee D (2018) Genome-wide identification of insertion and deletion markers in Chinese commercial Rice cultivars, based on next-generation sequencing data. Agronomy 8(4):36

    Article  CAS  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Gen Genomics 283(2):185–196

    Article  CAS  Google Scholar 

  • McNally KL, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H (2006) Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol 141(1):26–31

    Article  CAS  Google Scholar 

  • Meng L, Wang B, Zhao X, Ponce K, Qian Q, Ye G (2017) Association mapping of ferrous, zinc, and aluminum tolerance at the seedling stage in indica rice using MAGIC populations. Front Plant Sci 8:1822

    Article  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci-Yilmaz S, Mittler RON (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7(3):321–331

    CAS  Google Scholar 

  • Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M (2017) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci 8:759

    Article  Google Scholar 

  • Na YJ, Choi HK, Park MY, Choi SW, Xuan Vo KT, Jeon JS, Kim SY (2019) OsMAPKKK63 is involved in salt stress response and seed dormancy control. Plant Signal Behav 14:e1578633

    Article  CAS  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10(7):339–346

    Article  CAS  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819(2):97–103

    Article  CAS  Google Scholar 

  • Negrão S, Cecília Almadanim M, Pires IS, Abreu IA, Maroco J, Courtois B, Gregorio GB, McNally KL, Margarida Oliveira M (2013) New allelic variants found in key rice salt-tolerance genes: an association study. Plant Biotechnol J 11(1):87–100

    Article  CAS  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465(1–2):30–44

    Article  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150(3):1368–1379

    Article  CAS  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci 107(26):12034–12039

    Article  CAS  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B et al (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62(2):316–329

    Article  CAS  Google Scholar 

  • Pandey GK, Pandey A, Prasad M, Böhmer M (2016) Abiotic stress signaling in plants: functional genomic intervention. Front Plant Sci 7:681

    Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defence responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42(3):213–226

    Article  CAS  Google Scholar 

  • Parvathi MS, Nataraja KN (2017) Simultaneous expression of abiotic stress-responsive genes: an approach to improve multiple stress tolerance in crops. In: Plant tolerance to individual and concurrent stresses. Springer, New Delhi, pp 151–163

    Chapter  Google Scholar 

  • Paul S, Roychoudhury A (2018) Transgenic plants for improved salinity and drought tolerance. In: Gosal SS, Wani SH (eds) Biotechnologies of crop improvement, vol 2. Springer, New York, pp 141–181

    Chapter  Google Scholar 

  • Paul S, Roychoudhury A (2019) Transcript analysis of abscisic acid-inducible genes in response to different abiotic disturbances in two indica rice varieties. Theor Exp Plant Physiol 31:249–272

    Article  CAS  Google Scholar 

  • Phule AS, Barbadikar KM, Maganti SM, Seguttuvel P, Subrahmanyam D, Babu MP, Kumar PA (2019) RNA-seq reveals the involvement of key genes for aerobic adaptation in rice. Sci Rep 9(1):5235

    Article  CAS  Google Scholar 

  • Ponce KS, Ye G, Zhao X (2018) Qtl identification for cooking and eating quality in indica rice using multi-parent advanced generation intercross (MAGIC) population. Front Plant Sci 9:868

    Article  Google Scholar 

  • Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ et al (2011a) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol 157(1):216–228

    Article  CAS  Google Scholar 

  • Qi Y, Wang H, Zou Y, Liu C, Liu Y, Wang Y, Zhang W (2011b) Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice. FEBS Lett 585(1):231–239

    Article  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133(4):1755–1767

    Article  CAS  Google Scholar 

  • Raj RS, Singh C, Modi A, Subhash N (2015) Genetic transformation of lowland rice variety GR11 for drought tolerance and its ratification for upland paddy cultivation. Indian J Genet 75(1):30–40

    CAS  Google Scholar 

  • Rastogi S, Shah S, Kumar R, Vashisth D, Akhtar MQ, Kumar A, Dwivedi UN, Shasany AK (2019) Ocimum metabolomics in response to abiotic stresses: cold, flood, drought and salinity. PLoS One 14(2):e0210903

    Article  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A (2017) Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium-dependent protein kinases during plant abiotic stress. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley, Hoboken, pp 197–241

    Chapter  Google Scholar 

  • Roychoudhury A, Paul A (2012) Abscisic acid-inducible genes during salinity and drought stress. In: Berhardt LV (ed) Advances in medicine and biology, vol 51. Nova Science Publishers, New York, pp 1–78

    Google Scholar 

  • Roychoudhury A, Gupta B, Sengupta DN (2008) Trans-acting factor designated OSBZ8 interacts with both typical abscisic acid responsive elements as well as abscisic acid responsive element-like sequences in the vegetative tissues of indica rice cultivars. Plant Cell Rep 27:779–794

    Article  CAS  Google Scholar 

  • Roychoudhury A, Datta K, Datta SK (2011) Abiotic stress in plants: from genomics to metabolomics. In: Tuteja N, Gill SS, Tuteja R (eds) Omics and plant abiotic stress tolerance. Bentham Science Publishers, Sharjah, pp 91–120

    Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39:887–910

    Article  CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+−dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23(3):319–327

    Article  CAS  Google Scholar 

  • Sannemann W, Huang BE, Mathew B, Léon J (2015) Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol Breed 35(3):86

    Article  CAS  Google Scholar 

  • Schläppi MR, Jackson AK, Eizenga GC, Wang A, Chu C, Shi Y, Shimoyama N, Boykin DL (2017) Assessment of five chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection. Front Plant Sci 8:957

    Article  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Do cisgenic plants warrant less stringent oversight? Nat Biotechnol 24(7):753

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686

    Article  CAS  Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6:23719

    Article  CAS  Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    Article  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274(5294):1900–1902

    Article  CAS  Google Scholar 

  • Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80(3):241–253

    Article  CAS  Google Scholar 

  • Shew AM, Nalley LL, Danforth DM, Dixon BL, Nayga RM Jr, Delwaide AC, Valent B (2016) Are all GMO s the same? Consumer acceptance of cisgenic rice in India. Plant Biotechnol J 14(1):4–7

    Article  Google Scholar 

  • Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK (2018) Overexpression of OsNAC14 improves drought tolerance in rice. Front Plant Sci 9:310

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234

    Article  CAS  Google Scholar 

  • Singh K, McClean CJ, Büker P, Hartley SE, Hill JK (2017) Mapping regional risks from climate change for rainfed rice cultivation in India. Agric Syst 156:76–84

    Article  Google Scholar 

  • Singhabahu S, Wijesinghe C, Gunawardana D, Senerath-Yapa MD, Kannangara M, Edirisinghe R, Dissanayake VHW (2017) Whole genome sequencing and analysis of Godawee, a salt tolerant Indica rice variety. J Rice Res 5:177

    Article  Google Scholar 

  • Smýkal P, Nelson M, Berger J, von Wettberg E (2018) The impact of genetic changes during crop domestication. Agronomy 8(7):119

    Article  Google Scholar 

  • Soliveres S, Maestre FT (2014) Plant–plant interactions, environmental gradients and plant diversity: a global synthesis of community-level studies. Perspect Plant Ecol Evol Syst 16(4):154–163

    Article  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  CAS  Google Scholar 

  • Stadlmeier M, Hartl L, Mohler V (2018) Usefulness of a multiparent advanced generation intercross population with a greatly reduced mating design for genetic studies in winter wheat. Front Plant Sci 9:1825

    Article  Google Scholar 

  • Steffens B (2014) The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci 5:685

    Article  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J Plant Growth Regul 28(1):66–80

    Article  CAS  Google Scholar 

  • Takahashi S, Kimura S, Kaya H, Iizuka A, Wong HL, Shimamoto K, Kuchitsu K (2012) Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. J Biochem 152(1):37–43

    Article  CAS  Google Scholar 

  • Telem RS, Wani H, Singh NB, Nandini R, Sadhukhan R, Bhattacharya S, Mandal N (2013) Cisgenics-a sustainable approach for crop improvement. Curr Genomics 14(7):468–476

    Article  CAS  Google Scholar 

  • Tétard-Jones C, Kertesz MA, Preziosi RF (2011) Quantitative trait loci mapping of phenotypic plasticity and genotype–environment interactions in plant and insect performance. Philos Trans R Soc B Biol Sci 366(1569):1368–1379

    Article  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    Article  CAS  Google Scholar 

  • Tran LSP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1(1):32–39

    Article  Google Scholar 

  • Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47(1):285–293

    Article  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12(1):89

    Article  CAS  Google Scholar 

  • Walker JC (1994) Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol 26(5):1599–1609

    Article  CAS  Google Scholar 

  • Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015) Overexpression of a small heat-shock-protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134(4):384–393

    Article  CAS  Google Scholar 

  • Wang D, Liu J, Li C, Kang H, Wang Y, Tan X, Liu M, Deng Y, Wang Z, Liu Y, Zhang D (2016a) Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice 9(1):61

    Article  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016b) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    Google Scholar 

  • Wei S, Hu W, Deng X, Zhang Y, Liu X, Zhao X et al (2014) A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol 14(1):133

    Article  CAS  Google Scholar 

  • Wen F, Qin T, Wang Y, Dong W, Zhang A, Tan M, Jiang M (2015) OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice. J Integr Plant Biol 57(2):213–228

    Article  CAS  Google Scholar 

  • Wu F, Sheng P, Tan J, Chen X, Lu G, Ma W, Heng Y, Lin Q, Zhu S, Wang J, Wang J (2015) Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. J Exp Bot 66(1):271–281

    Google Scholar 

  • Wu L, Feng L, Li Y, Wang J, Wu L (2019) A yield-related agricultural drought index reveals spatio-temporal characteristics of droughts in southwestern China. Sustainability 11(3):714

    Article  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

    Article  CAS  Google Scholar 

  • Xiong H, Yu J, Miao J, Li J, Zhang H, Wang X et al (2018) Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiol 178(1):451–467

    Article  CAS  Google Scholar 

  • Yadav S, Sharma KD (2016) Molecular and morphophysiological analysis of drought stress in plants. In: Plant growth. IntechOpen, Rijeka. https://doi.org/10.5772/65246

    Chapter  Google Scholar 

  • Yang G, Shen S, Yang S, Komatsu S (2003) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol Biochem 41(4):369–374

    Article  CAS  Google Scholar 

  • Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 35(9):531–5S2

    Article  CAS  Google Scholar 

  • Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW (2010) A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem 285(10):7119–7126

    Article  CAS  Google Scholar 

  • Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36(2):235–242

    Article  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61(4):672–685

    Article  CAS  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296(5565):79–92

    Article  CAS  Google Scholar 

  • Yuan P, Yang T, Poovaiah BW (2018) Calcium signaling-mediated plant response to cold stress. Int J Mol Sci 19(12):3896

    Article  CAS  Google Scholar 

  • Zarattini M, Forlani G (2017) Toward unveiling the mechanisms for transcriptional regulation of proline biosynthesis in the plant cell response to biotic and abiotic stress conditions. Front Plant Sci 8:927

    Article  Google Scholar 

  • Zhang Q, Li J, Xue Y, Han B, Deng XW (2008) Rice 2020: a call for an international coordinated effort in rice functional genomics. Mol Plant 1(5):715–719

    Article  CAS  Google Scholar 

  • Zhang M, Liu W, Bi YP (2009) Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses. Yi Chuan 31(3):236–244

    Article  CAS  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232(3):765–774

    Article  CAS  Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/C as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

    Article  CAS  Google Scholar 

  • Zhang P, Zhang Z, Wang J, Cong B, Chen K, Liu S (2015) A novel receptor-like kinase (PnRLK-1) from the Antarctic moss Pohlia nutans enhances salt and oxidative stress tolerance. Plant Mol Biol Report 33(4):1156–1170

    Article  CAS  Google Scholar 

  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39(3):47

    Article  CAS  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  Google Scholar 

  • Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, Chen C, Ma L, Wang J, Xiong L, Zhang Q (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63(5):591–608

    Article  CAS  Google Scholar 

  • Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 8:1598

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhar, A. (2020). Rice Tolerance to Multiple Abiotic Stress: Genomics and Genetic Engineering. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4120-9_25

Download citation

Publish with us

Policies and ethics