Skip to main content

Approach to a Patient with Peritoneal Metastases with Unknown Primary Site: Focus on Histopathological Evaluation

  • Chapter
  • First Online:

Abstract

Peritoneal metastases (PM) are usually secondary to other primary tumours whilst some rare tumours arise from the peritoneum itself. In some instances, PM may present in absence of a known primary and a focused search fails to reveal a primary site too. Peritoneal metastases with unknown primary site is a poorly studied entity. There is only one series of 15 cases and few other case reports on this. Some of these tumours may have a good prognosis though majority have high-grade disease with a poor long-term outcome. In this chapter, we look at the common histologies of peritoneal metastases and the pathological approach to determining the primary site.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rajan F, Bhatt A. Evolving role of CRS and HIPEC: current indications. In: Bhatt A, editor. Management of peritoneal metastases-cytoreductive surgery, HIPEC and beyond. Singapore: Springer; 2018.

    Google Scholar 

  2. Kusamura S, Moran BJ, Sugarbaker PH, Levine EA, Elias D, Baratti D, Morris DL, Sardi A, Glehen O, Deraco M, Peritoneal Surface Oncology Group International (PSOGI). Multicentre study of the learning curve and surgical performance of cytoreductive surgery with intraperitoneal chemotherapy for pseudomyxoma peritonei. Br J Surg. 2014;101(13):1758–65. https://doi.org/10.1002/bjs.9674. Epub 20 Oct 2014.

    Article  CAS  PubMed  Google Scholar 

  3. Sebbag G, Shmookler BM, Chang D, Sugarbaker PH. Peritoneal carcinomatosis from an unknown primary site. Management of 15 patients. Tumori. 2001;87(2):67–73.

    CAS  PubMed  Google Scholar 

  4. Passot G, Vaudoyer D, Villeneuve L, et al. What made hyperthermic intraperitoneal chemotherapy an effective curative treatment for peritoneal surface malignancy: a 25-year experience with 1,125 procedures. J Surg Oncol. 2016;113:796–803.

    PubMed  Google Scholar 

  5. Pavlidis N, Fizazi K. Cancer of unknown primary (CUP). Crit Rev Oncol Hematol. 2005;54:243–50.

    PubMed  Google Scholar 

  6. Frost P. Unknown primary tumours: an example of accelerated (type 2) tumor progression. Basic Life Sci. 1991;57:233–7.

    CAS  PubMed  Google Scholar 

  7. Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–12.

    CAS  PubMed  Google Scholar 

  8. Pavlidis N, Khaled H, Gaafar R. A mini review on cancer of unknown primary site: a clinical puzzle for the oncologists. J Adv Res. 2015;6(3):375–82. https://doi.org/10.1016/j.jare.2014.11.007. Epub 21 Nov 2014.

    Article  PubMed  Google Scholar 

  9. McCluggage WG. Recent advances in immunohistochemistry in the diagnosis of ovarian neoplasms. J Clin Pathol. 2000;53:558–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. McCluggage WG. Recent advances in immunohistochemistry in gynaecological pathology. Histopathology. 2002;46:309–26.

    Google Scholar 

  11. McCluggage WG, Young RH. Immunohistochemistry as a diagnostic aid in the evaluation of ovarian tumors. Semin Diagn Pathol. 2005;22:3–32.

    PubMed  Google Scholar 

  12. Ozcan A, Steven SS, Hamilton C, Anjana K, Coffey D, Krishnan B, Truong LD. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a cornprehensive immunohistochemical study. Mod Pathol. 2011;24:751–64.

    CAS  PubMed  Google Scholar 

  13. Chai H, Ren Q, Fan Q, Ye L, Du G, Du H, et al. PAX8 is a potential marker for the diagnosis of primary epithelial ovarian cancer. Oncol Lett. 2017;14:5871–5. https://doi.org/10.3892/ol.2017.6949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Hussaini M, Stockman A, Foster H, McCluggage WG. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15.

    CAS  PubMed  Google Scholar 

  15. Oka Y, Tsuboi A, Oji Y, Kawase I, Sugiyama H. WT1 peptide vaccine for the treatment of cancer. Curr Opin Immunol. 2008;20(2):211–20.

    CAS  PubMed  Google Scholar 

  16. Makrigiannakis A, Amin K, Coukos G, Tilly JL, Coutifaris C. Regulated expression and potential roles of p53 and Wilms’ tumor suppressor gene (WT1) during follicular development in the human ovary. J Clin Endocrinol Metab. 2000;85(1):449–59.

    CAS  PubMed  Google Scholar 

  17. Bárcena C, Oliva E. WT1 expression in the female genital tract. Adv Anat Pathol. 2011;18(6):454–65.

    PubMed  Google Scholar 

  18. Liliac L, Carcangiu ML, Canevari S, Căruntu ID, Ciobanu Apostol DG, Danciu M, Onofriescu M, Amălinei C. The value of PAX8 and WT1 molecules in ovarian cancer diagnosis. Rom J Morphol Embryol. 2013;54(1):17–27.

    PubMed  Google Scholar 

  19. Zhao L, Guo M, Sneige N, Gong Y. Value of PAX8 and WT1 immunostaining in confirming the ovarian origin of metastatic carcinoma in serous effusion specimens. Am J Clin Pathol. 2012;137(2):304–9.

    PubMed  Google Scholar 

  20. Dennis JL, Hvidsten TR, Wit EC, et al. Markers of adenocarcinoma characteristic of the site of origin: development of a diagnostic algorithm. Clin Cancer Res. 2005;11(10):3766–72. https://doi.org/10.1158/1078-0432.CCR-04-2236.

    Article  CAS  PubMed  Google Scholar 

  21. Bayrak R, Haltas H, Yenidunya S. The value of CDX2 and cytokeratins 7 and 20 expression in differentiating colorectal adenocarcinomas from extraintestinal gastrointestinal adenocarcinomas: cytokeratin 7−/20+ phenotype is more specific than CDX2 antibody. Diagn Pathol. 2012;7(1):1–11. https://doi.org/10.1186/1746-1596-7-9.

    Article  Google Scholar 

  22. FitzPatrick DR, Carr IM, McLaren L, et al. Identification of SATB2 as the cleft palate gene on 2q32–q33. Hum Mol Genet. 2003;12(19):2491–501. https://doi.org/10.1093/hmg/ddg248.

    Article  CAS  PubMed  Google Scholar 

  23. Conner JR, Hornick JL. Metastatic carcinoma of unknown primary: diagnostic approach using immunohistochemistry. Adv Anat Pathol. 2015;22(3):149–67. https://doi.org/10.1097/pap.0000000000000069.

    Article  CAS  PubMed  Google Scholar 

  24. Magnusson K, de Wit M, Brennan DJ, et al. SATB2 in combination with cytokeratin 20 identifies over 95% of all colorectal carcinomas. Am J Surg Pathol. 2011;35(7):937–48. https://doi.org/10.1097/PAS.0b013e31821c3dae.

    Article  PubMed  Google Scholar 

  25. Dragomir A, de Wit M, Johansson C, Uhlen M, Ponten F. The role of SATB2 as a diagnostic marker for tumors of colorectal origin: results of a pathology-based clinical prospective study. Am J Clin Pathol. 2014;141(5):630–8.

    PubMed  Google Scholar 

  26. Lin F, Shi J, Zhu S, et al. Cadherin-17 and SATB2 are sensitive and specific immunomarkers for medullary carcinoma of the large intestine. Arch Pathol Lab Med. 2014;138(8):1015–26. https://doi.org/10.5858/arpa.2013-0452-oa.

    Article  PubMed  Google Scholar 

  27. Brandler TC, Jelloul F, Soto D, Das K, Rosen L, Bhuiya TA. Young investigator challenge: cadherin-17 and SATB2 in cytology specimens: do these new immunostains help in differentiating metastatic colorectal adenocarcinoma from adenocarcinomas of other origins? Cancer Cytopathol. 2015;123(12):706–13.

    CAS  PubMed  Google Scholar 

  28. Berg KB, Schaeffer DF. SATB2 as an immunohistochemical marker for colorectal adenocarcinoma: a concise review of benefits and pitfalls. Arch Pathol Lab Med. 2017;141(10):1428–33. https://doi.org/10.5858/arpa.2016-0243-RS.

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein NS, Bassi D. Cytokeratins 7, 17, and 20 reactivity in pancreatic and ampulla of vater adenocarcinomas. Percentage of positivity and distribution is affected by the cut-point threshold. Am J Clin Pathol. 2001;115:695–702.

    CAS  PubMed  Google Scholar 

  30. Park SY, Kim HS, Hong EK, et al. Expression of cytokeratins 7 and 20 in primary carcinomas of the stomach and colorectum and their value in the differential diagnosis of metastatic carcinomas to the ovary. Hum Pathol. 2002;33:1078–85.

    CAS  PubMed  Google Scholar 

  31. Ji H, Isacson C, Seidman JD, et al. Cytokeratins 7 and 20, Dpc4, and MUC5AC in the distinction of metastatic mucinous carcinomas in the ovary from primary ovarian mucinous tumors: Dpc4 assists in identifying metastatic pancreatic carcinomas. Int J Gynecol Pathol. 2002;21:391–400.

    PubMed  Google Scholar 

  32. Chhieng DC, Benson E, Eltoum I, et al. MUC1 and MUC2 expression in pancreatic ductal carcinoma obtained by fine-needle aspiration. Cancer. 2003;99:365–71.

    CAS  PubMed  Google Scholar 

  33. Nonaka D, Chiriboga L, Soslow RA. Expression of pax8 as a useful marker in distinguishing ovarian carcinomas from mammary carcinomas. Am J Surg Pathol. 2008;32:1566–71.

    PubMed  Google Scholar 

  34. Tornos C, Soslow R, Chen S, et al. Expression of WT1, CA125, and GCDFP-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am J Surg Pathol. 2005;29:1482–9.

    PubMed  Google Scholar 

  35. Liu H, Shi J, Wilkerson ML, et al. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138:57–64.

    PubMed  Google Scholar 

  36. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127:103–13.

    CAS  PubMed  Google Scholar 

  37. Ruiz-Tovar J, Alonso HN, Morales CV, Lobo ME, Sanjuanbenito DA, Martinez ME. Peritoneal carcinomatosis secondary to carcinoid tumour. Clin Transl Oncol. 2007;9:804–5.

    CAS  PubMed  Google Scholar 

  38. Mertz H, Vyberg M, Paulsen SM, et al. Immunohistochemical detection of neuroendocrine markers in tumors of the lungs and gastrointestinal tract. Appl Immunohistochem. 1998;6:175–80.

    CAS  Google Scholar 

  39. Vasseur B, Cadiot G, Zins M, et al. Peritoneal carcinomatosis in patients with digestive endocrine tumors. Cancer. 1996;78:1686–92.

    CAS  PubMed  Google Scholar 

  40. Vinik AI, Thompson N, Eckhauser F, Moattari R. Clinical features of carcinoid syndrome and the use of somatostatin analogue in its management. Acta Oncol. 1989;28:389–402.

    CAS  PubMed  Google Scholar 

  41. Gonzalez RS, Liu EH, Alvarez JR, Ayers GD, Washington MK, Shi C. Should mesenteric tumor deposits be included in staging of well differentiated small intestine neuroendocrine tumors? Mod Pathol. 2014;27:1288–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chambers AJ, Pasieka JL, Dixon E, Rorstad O. Role of imaging in the preoperative staging of small bowel neuroendocrine tumors. J Am Coll Surg. 2010;211:620–7.

    PubMed  Google Scholar 

  43. Søreide O, Berstad T, Bakka A, Schrumpf E, Hanssen LE, Engh V, Bergan A, Flatmark A. Surgical treatment as a principle in patients with advanced abdominal carcinoid tumors. Surgery. 1992;111:48–54.

    PubMed  Google Scholar 

  44. Elias D, Lefevre JH, Duvillard P, Goéré D, Dromain C, Dumont F, Baudin E. Hepatic metastases from neuroendocrine tumors with a thin slice CT scan and pathological examination: they are many more than you think. Ann Surg. 2010;251:307–10.

    PubMed  Google Scholar 

  45. Kimura N, Pilichowska M, Okamoto H, et al. Immunohistochemical expression of chromogranins A and B, prohormone convertases 2 and 3, and amidating enzyme in carcinoid tumors and pancreatic endocrine tumors. Mod Pathol. 2000;13:140–6.

    CAS  PubMed  Google Scholar 

  46. Al-Khafaji B, Noffsinger AE, Miller MA, et al. Immunohistologic analysis of gastrointestinal and pulmonary carcinoid tumors. Hum Pathol. 1998;29:992–9.

    CAS  PubMed  Google Scholar 

  47. Fahrenkamp AG, Wibbeke C, Winde G, et al. Immunohistochemical distribution of chromogranins A and B and secretogranin II in neuroendocrine tumours of the gastrointestinal tract. Virchows Arch. 1995;426:361–7.

    CAS  PubMed  Google Scholar 

  48. Sobin LH, Hjermstad BM, Sesterhenn IA, et al. Prostatic acid phosphatase activity in carcinoid tumors. Cancer. 1986;58:136–8.

    CAS  PubMed  Google Scholar 

  49. Barbareschi M, Roldo C, Zamboni G, et al. CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol. 2004;28:1169–76.

    PubMed  Google Scholar 

  50. La Rosa S, Rigoli E, Uccella S, et al. CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch. 2004;445:248–54.

    CAS  PubMed  Google Scholar 

  51. Jaffee IM, Rahmani M, Singhal MG, et al. Expression of the intestinal transcription factor CDX2 in carcinoid tumors is a marker of midgut origin. Arch Pathol Lab Med. 2006;130:1522–6.

    PubMed  Google Scholar 

  52. Dabaja BS, Suki D. Pro B, et al. Adenocarcinoma of the small bowel: presentation, prognostic factors, and outcome of 217 patients. Cancer. 2004;101:518–26.

    PubMed  Google Scholar 

  53. Locher C, Malka D, Boige V, et al. Combination chemotherapy in advanced small bowel adenocarcinoma. Oncology. 2005;69:290–4.

    CAS  PubMed  Google Scholar 

  54. Overman MJ, Kopetz S, Wen S, et al. Chemotherapy with 5-fluorouracil and a platinum compound improves outcomes in metastatic small bowel adenocarcinoma. Cancer. 2008;113:2038–45.

    CAS  PubMed  Google Scholar 

  55. Talamonti MS, Goetz LH, Rao S, et al. Primary cancers of the small bowel: analysis of prognostic factors and results of surgical management. Arch Surg. 2002;137:564–70.

    PubMed  Google Scholar 

  56. North JH, Pack MS. Malignant tumors of the small intestine: a review of 144 cases. Am Surg. 2000;66:46–51.

    CAS  PubMed  Google Scholar 

  57. Frost DB, Mercado PD, Tyrell JS. Small bowel cancer: a 30-year review. Ann Surg Oncol. 1994;1:290–5.

    CAS  PubMed  Google Scholar 

  58. Chen ZM, Ritter JH, Wang HL. Differential expression of alpha-methylacyl coenzyme a racemase in adenocarcinomas of the small and large intestines. Am J Surg Pathol. 2005;29:890–6.

    PubMed  Google Scholar 

  59. Wong H, Chu P. Immunohistochemical features of the gastrointestinal tract tumors. J Gastrointest Oncol. 2012;3(3):262–84.

    PubMed  PubMed Central  Google Scholar 

  60. Johnson DE, Herndier BG, Medeiros LJ, et al. The diagnostic utility of the keratin profiles of hepatocellular carcinoma and cholangiocarcinoma. Am J Surg Pathol. 1988;12:187–97.

    CAS  PubMed  Google Scholar 

  61. Hatano Y, Hatano K, Tamada M, Morishige KI, Tomita H, Yanai H, Hara A. A comprehensive review of ovarian serous carcinoma. Adv Anat Pathol. 2019;26(5):329–39. https://doi.org/10.1097/PAP.0000000000000243.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ramalingam P. Morphologic, immunophenotypic, and molecular features of epithelial ovarian cancer. Oncology (Williston Park). 2016;30(2):166–76.

    PubMed  Google Scholar 

  63. Micco M, Sala E, Lakhman Y, Hricak H, Vargas HA. Role of imaging in the pretreatment evaluation of common gynecological cancers. Womens Health (Lond). 2014;10(3):299–321.

    CAS  Google Scholar 

  64. Saida T, Tanaka YO, Matsumoto K, Satoh T, Yoshikawa H, Minami M. Revised FIGO staging system for cancer of the ovary, fallopian tube, and peritoneum: important implications for radiologists. Jpn J Radiol. 2016;34(2):117–24.

    CAS  PubMed  Google Scholar 

  65. Ehdaivand S. Serous carcinoma. PathologyOutlines.com website. https://www.pathologyoutlines.com/topic/ovarytumorserouscarcinoma.html. Accessed 1 Nov 2019.

  66. Sumathi VP, Al-Hussaini M, Connolly LE, Fullerton L, McCluggage WG. Endometrial stromal neoplasms are immunoreactive with WT-1 antibody. Int J Gynecol Pathol. 2004;23(3):241–7.

    CAS  PubMed  Google Scholar 

  67. Shimizu M, Toki T, Takagi Y, et al. Immunohistochemical detection of the Wilms’ tumor gene (WT1) in epithelial ovarian tumors. Int J Gynecol Pathol. 2000;19:158–63.

    CAS  PubMed  Google Scholar 

  68. McCluggage WG. WT1 is of value in ascertaining the site of origin of serous carcinomas within the female genital tract. Int J Gynecol Pathol. 2004;23:97–9.

    PubMed  Google Scholar 

  69. Chen W, Husain A, Nelson GS, et al. Immunohistochemical profiling of endometrial serous carcinoma. Int J Gynecol Pathol. 2017;36:128–39.

    CAS  PubMed  Google Scholar 

  70. McCluggage WG. Immunohistochemical markers as a diagnostic aid in ovarian pathology. Diagn Histopathol. 2008;14(8):335–51.

    Google Scholar 

  71. Davidson B. New diagnostic and molecular characteristics of malignant mesothelioma. Ultrastruct Pathol. 2008;32:227–40.

    PubMed  Google Scholar 

  72. Battifora H, McCaughey WTE. Tumors of the serosal membranes. Washington, DC: Armed Forces Institute of Pathology; 1994.

    Google Scholar 

  73. Munkholm-Larsen S, Cao CQ, Yan TD. Malignant peritoneal mesothelioma. World J Gastrointest Surg. 2009;1(1):38–48. https://doi.org/10.4240/wjgs.v1.i1.38.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ordóñez NG. What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol. 2007;38:1–16.

    PubMed  Google Scholar 

  75. Husain AN, Colby T, Ordóñez N, et al., International Mesothelioma Interest Group. Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2013;137(5):647–67.

    Google Scholar 

  76. Comin CE, Novelli L, Boddi V, et al. Calretinin, thrombomodulin, CEA, and CD15: a useful combination of immunohistochemical markers for differentiating pleural epithelial mesothelioma from peripheral pulmonary adenocarcinoma. Hum Pathol. 2001;32:529–36.

    CAS  PubMed  Google Scholar 

  77. Ordóñez NG. The diagnostic utility of immunohistochemistry and electron microscopy in distinguishing between peritoneal mesotheliomas and serous carcinomas: a comparative study. Mod Pathol. 2006;19:34–48.

    PubMed  Google Scholar 

  78. Davidson B, Nielsen S, Christensen J, et al. The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am J Surg Pathol. 2001;25:1405–12.

    CAS  PubMed  Google Scholar 

  79. Carella R, Deleonardi G, D’Errico A, et al. Immunohistochemical panels for differentiating epithelial malignant mesothelioma from lung adenocarcinoma: a study with logistic regression analysis. Am J Surg Pathol. 2001;25:43–50.

    CAS  PubMed  Google Scholar 

  80. Abutaily AS, Addis BJ, Roche WR. Immunohistochemistry in the distinction between malignant mesothelioma and pulmonary adenocarcinoma: a critical evaluation of new antibodies. J Clin Pathol. 2002;55:662–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ordóñez NG. Immunohistochemical diagnosis of epithelioid mesothelioma: a critical review of old markers, new markers. Hum Pathol. 2002;33:953–67.

    PubMed  Google Scholar 

  82. Cathro HP, Stoler MH. The utility of calretinin, inhibin, and WT1 immunohistochemical staining in the differential diagnosis of ovarian tumors. Hum Pathol. 2005;36:195–201.

    CAS  PubMed  Google Scholar 

  83. Martignoni G, Pea M, Chilosi M, et al. Parvalbumin is constantly expressed in chromophobe renal carcinoma. Mod Pathol. 2001;14:760–7.

    CAS  PubMed  Google Scholar 

  84. Osborn M, Pelling N, Walker MM, Fisher C, Nicholson AG. The value of mesothelium-associated T antibodies in distinguishing between metastatic renal cell carcinoma and mesotheliomas. Histopathology. 2002;41:301–7.

    CAS  PubMed  Google Scholar 

  85. Lugli A, Forster Y, Haas P, et al. Calretinin expression in human normal and neoplastic tissues: a tissue microarray analysis on 5233 tissue samples. Hum Pathol. 2003;34:994–1000.

    CAS  PubMed  Google Scholar 

  86. Marks A, Sutherland DR, Bailey D, et al. Characterization and distribution of an oncofetal antigen (M2A antigen) expressed on testicular germ cell tumors. Br J Cancer. 1999;80:569–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s and a subset of angiosarcomas. Mod Pathol. 2002;15:434–40.

    PubMed  Google Scholar 

  88. Fogt F, Pascha TL, Zhang PJ, et al. Proliferation of D2-40-expressing intestinal lymphatic vessels in the lamina propria in inflammatory bowel disease. Int J Mol Med. 2004;13:211–4.

    CAS  PubMed  Google Scholar 

  89. Fogt F, Zimmerman RL, Ross HM, et al. Identification of lymphatic vessels in malignant, adenomatous and normal colonic mucosa using the novel immunostain D2-40. Oncol Rep. 2004;11:47–50.

    CAS  PubMed  Google Scholar 

  90. Kahn HJ, Marks A. A new monoclonal antibody, D2-40, for detection of lymphatic invasion in primary tumors. Lab Investig. 2002;82:1255–7.

    PubMed  Google Scholar 

  91. Ordóñez NG. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol. 2003;16:192–7.

    PubMed  Google Scholar 

  92. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13:962–72.

    CAS  PubMed  Google Scholar 

  93. Ordóñez NG. Value of estrogen and progesterone receptor immunostaining in distinguishing between peritoneal mesotheliomas and serous carcinomas. Hum Pathol. 2005;36:1163–7.

    PubMed  Google Scholar 

  94. Tandon RT, Jimenez-Cortez Y, Taub R, Borczuk AC. Immunohistochemistry in peritoneal mesothelioma: a single-center experience of 244 cases. Arch Pathol Lab Med. 2018;142(2):236–42. https://doi.org/10.5858/arpa.2017-0092-OA. Epub 19 Oct 2017.

    Article  CAS  PubMed  Google Scholar 

  95. Barnetson RJ, Burnett RA, Downie I, Harper CM, Roberts F. Immunohistochemical analysis of peritoneal mesothelioma and primary and secondary serous carcinoma of the peritoneum. Am J Clin Pathol. 2006;125(1):67–76. https://doi.org/10.1309/8fch-q3vp-bwm7-b5x9.

    Article  CAS  PubMed  Google Scholar 

  96. Comin CE, Saieva C, Messerini LH. Caldesmon, calretinin, estrogen receptor, and Ber-EP4: a useful combination of Immunohistochemical markers for differentiating epithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. Am J Surg Pathol. 2007;31(8):1139–48. https://doi.org/10.1097/pas.0b013e318033e7a8.

    Article  PubMed  Google Scholar 

  97. Tong GX, Chiriboga L, Hamele-Bena D, Borczuk AC. Expression of PAX2 in papillary serous carcinoma of the ovary: immunohistochemical evidence of fallopian tube or secondary müllerian system origin? Mod Pathol. 2007;20(8):856–63. https://doi.org/10.1038/modpathol.3800827.

    Article  CAS  PubMed  Google Scholar 

  98. Trupiano JK, Geisinger KR, Willingham MC, et al. Diffuse malignant mesothelioma of the peritoneum and pleura, analysis of markers. Mod Pathol. 2004;17(4):476–81. https://doi.org/10.1038/modpathol.3800067.

    Article  PubMed  Google Scholar 

  99. Hashi A, Yuminamochi T, Murate S-I, Iwamoto H, Honda T, Hoshi K. Wilms tumor gene immunoreactivity in primary serous carcinomas of the fallopian tube, ovary, endometrium, and peritoneum. Int J Gynecol Pathol. 2003;22:374–7.

    PubMed  Google Scholar 

  100. Delhorme JB, Severac F, Averous G, Glehen O, Passot G, Bakrin N, Marchal F, Pocard M, Lo Dico R, Eveno C, Carrere S, Sgarbura O, Quenet F, Ferron G, Goéré D, Brigand C, French National Network of Peritoneal Surface Malignancies (RENAPE). Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei of appendicular and extra-appendicular origin. Br J Surg. 2018;105(6):668–76. https://doi.org/10.1002/bjs.10716. Epub 7 Feb 2018.

    Article  PubMed  Google Scholar 

  101. Bhatt A, Mishra S, Parikh L, et al. Essentials for pathological evaluation of peritoneal surface malignancies and synoptic reporting of cytoreductive surgery specimens—a review and evidence-based guide. Indian J Surg Oncol. 2019;332 https://doi.org/10.1007/s13193-019-00897-7.

  102. Vang R, Gown AM, Barry TS, et al. Cytokeratins 7 and 20 in primary and secondary mucinous tumors of the ovary: analysis of coordinate immunohistochemical expression profiles and staining distribution in 179 cases. Am J Surg Pathol. 2006;30:1130–9.

    PubMed  Google Scholar 

  103. Binh MB, Sastre-Garau X, Guillou L, et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol. 2005;29(10):1340–7.

    PubMed  Google Scholar 

  104. Liu Y, Ishibashi H, Hirano M, Takeshita K, Mizumoto A, Ichinose M, Nishino E, Kashu I, Yamamoto Y, Sugarbaker PH, Yonemura Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy for pseudomyxoma peritonei arising from urachus. Ann Surg Oncol. 2015;22(8):2799–805.

    PubMed  Google Scholar 

  105. Leen SL, Singh N. Pathology of primary and metastatic mucinous ovarian neoplasms. J Clin Pathol. 2012;65:591–5.

    PubMed  Google Scholar 

  106. Carr NJ, Bibeau F, Bradley RF, Dartigues P. The histopathological classification, diagnosis and differential diagnosis of mucinous appendiceal neoplasms, appendiceal adenocarcinomas and pseudomyxoma peritonei. Histopathology. 2017;71(6):847–58. https://doi.org/10.1111/his.13324.

    Article  PubMed  Google Scholar 

  107. Stewart CJ, Ardakani NM, Doherty DA, Young RH. An evaluation of the morphologic features of low-grade mucinous neoplasms of the appendix metastatic in the ovary and a comparison with primary ovarian mucinous tumors. Int J Gynecol Pathol. 2014;33:1–10.

    PubMed  Google Scholar 

  108. Ronnett BM, Yemelyanova AV, Vang R, et al. Endocervical adenocarcinomas with ovarian metastases: analysis of 29 cases with emphasis on minimally invasive cervical tumours and the ability of the metastases to simulate primary ovarian neoplasms. Am J Surg Pathol. 2008;32:1835–53.

    PubMed  Google Scholar 

  109. Cook DS, Attanoos RL, Jalloh SS, Gibbs AR. ‘Mucin-positive’ epithelial mesothelioma of the peritoneum: an unusual diagnostic pitfall. Histopathology. 2000;37:33–6.

    CAS  PubMed  Google Scholar 

  110. Facchetti F, Lonardi S, Gentili F, et al. Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch. 2007;451:669–80.

    CAS  PubMed  Google Scholar 

  111. Facchetti F, Gentili F, Lonardi S, Bercich L, Santin A. Claudin-4 in mesothelioma diagnosis. Histopathology. 2007;51:261–3.

    CAS  PubMed  Google Scholar 

  112. McCluggage WG, Kirk SJ. Pregnancy associated endometriosis with pronounced stromal myxoid change. J Clin Pathol. 2000;53:241–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Diaz L, Okonkwo A, Solans EP, Bedrossian C, Rao MS. Extensive myxoid change in well differentiated papillary mesothelioma of the pelvic peritoneum. Ann Diagn Pathol. 2002;6:164–7.

    PubMed  Google Scholar 

  114. Bhatt A, Ramakrishnan AS. Rare indications for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. In: Bhatt A, editor. Management of peritoneal metastases—cytoreductive surgery, HIPEC and beyond. Singapore: Springer; 2018.

    Google Scholar 

  115. Lee CH, Nucci MR. Endometrial stromal sarcoma—the new genetic paradigm. Histopathology. 2015;67(1):1–19. https://doi.org/10.1111/his.12594. Epub 22 Jan 2015.

    Article  PubMed  Google Scholar 

  116. Lee CH, Ou WB, Marino-Enriquez A, et al. 14-3-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc Natl Acad Sci U S A. 2012;109:929–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Chang KL, Crabtree GS, Lim-Tan SK, et al. Primary uterine endometrial stromal neoplasms. A clinicopathologic study of 117 cases. Am J Surg Pathol. 1990;14:415–38.

    CAS  PubMed  Google Scholar 

  118. Evans HL. Endometrial stromal sarcoma and poorly differentiated endometrial sarcoma. Cancer. 1982;50:2170–82.

    CAS  PubMed  Google Scholar 

  119. Hendrickson MR, Tavassoli FA, Kempson RL. Mesenchymal tumours and related lesions. In: World Health Organization classification of tumours pathology and genetics of tumours of the breast and female genital organ. Lyon: IARC Press; 2003.

    Google Scholar 

  120. Norris HJ, Taylor HB. Mesenchymal tumors of the uterus. I. A clinical and pathological study of 53 endometrial stromal tumors. Cancer. 1966;19:755–66.

    CAS  PubMed  Google Scholar 

  121. Chu PG, Arber DA, Weiss LM, et al. Utility of CD10 in distinguishing between endometrial stromal sarcoma and uterine smooth muscle tumors: an immunohistochemical comparison of 34 cases. Mod Pathol. 2001;14:465–71.

    CAS  PubMed  Google Scholar 

  122. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39:273–8.

    CAS  PubMed  Google Scholar 

  123. Lee CH, Marino-Enriquez A, Ou W, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36:641–53.

    PubMed  Google Scholar 

  124. Lee CH, Ali RH, Rouzbahman M, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36:1562–70.

    PubMed  PubMed Central  Google Scholar 

  125. Klein WM, Kurman RJ. Lack of expression of c-kit protein (CD117) in mesenchymal tumors of the uterus and ovary. Int J Gynecol Pathol. 2003;22:181–4.

    PubMed  Google Scholar 

  126. Nakayama M, Mitsuhashi T, Shimizu Y, et al. Immunohistochemical evaluation of KIT expression in sarcomas of the gynecologic region. Int J Gynecol Pathol. 2006;25:70–6.

    PubMed  Google Scholar 

  127. Caudell JJ, Deavers MT, Slomovitz BM, et al. Imatinib mesylate (gleevec)-targeted kinases are expressed in uterine sarcomas. Appl Immunohistochem Mol Morphol. 2005;13:167–70.

    CAS  PubMed  Google Scholar 

  128. Lee CH, Liang CW, Espinosa I. The utility of discovered on gastrointestinal stromal tumor 1 (DOG1) antibody in surgical pathology-the GIST of it. Adv Anat Pathol. 2010;17:222–32.

    CAS  PubMed  Google Scholar 

  129. Hendrickson MR, Tavassoli FA, Kempson RL, et al. Mesenchymal tumours and related lesions. In: Tavassoli FA, Devilee P, editors. World Health Organization classification of tumours: pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 236–43.

    Google Scholar 

  130. Bell SW, Kempson RL, Hendrickson MR. Problematic uterine smooth muscle neoplasms. A clinicopathologic study of 213 cases. Am J Surg Pathol. 1994;18:535–58.

    CAS  PubMed  Google Scholar 

  131. Oliva E, Young RH, Amin MB, et al. An immunohistochemical analysis of endometrial stromal and smooth muscle tumors of the uterus: a study of 54 cases emphasizing the importance of using a panel because of overlap in immunoreactivity for individual antibodies. Am J Surg Pathol. 2002;26:403–12.

    PubMed  Google Scholar 

  132. Rizeq MN, van de Rijn M, Hendrickson MR, et al. A comparative immunohistochemical study of uterine smooth muscle neoplasms with emphasis on the epithelioid variant. Hum Pathol. 1994;25:671–7.

    CAS  PubMed  Google Scholar 

  133. Bodner-Adler B, Bodner K, Czerwenka K, et al. Expression of p16 protein in patients with uterine smooth muscle tumors: an immunohistochemical analysis. Gynecol Oncol. 2005;96:62–6.

    CAS  PubMed  Google Scholar 

  134. Atkins KA, Arronte N, Darus CJ, et al. The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol. 2008;32:98–102.

    PubMed  Google Scholar 

  135. O’Neill CJ, McBride HA, Connolly LE, et al. Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology. 2007;50:851–8.

    PubMed  Google Scholar 

  136. de Vos S, Wilczynski SP, Fleischhacker M, et al. p53 alterations in uterine leiomyosarcomas versus leiomyomas. Gynecol Oncol. 1994;54:205–8.

    CAS  PubMed  Google Scholar 

  137. Blom R, Guerrieri C, Stal O, et al. Leiomyosarcoma of the uterus: a clinicopathologic, DNA flow cytometric, p53, and mdm-2 analysis of 49 cases. Gynecol Oncol. 1998;68:54–61.

    CAS  PubMed  Google Scholar 

  138. Jeffers MD, Farquharson MA, Richmond JA, et al. p53 immunoreactivity and mutation of the p53 gene in smooth muscle tumours of the uterine corpus. J Pathol. 1995;177:65–70.

    CAS  PubMed  Google Scholar 

  139. Hall KL, Teneriello MG, Taylor RR, et al. Analysis of Ki-ras, p53, and MDM2 genes in uterine leiomyomas and leiomyosarcomas. Gynecol Oncol. 1997;65:330–5.

    CAS  PubMed  Google Scholar 

  140. Lasota J, Jasinski M, Sarlomo-Rikala M, et al. Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am J Pathol. 1999;154:53–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rushing RS, Shajahan S, Chendil D, et al. Uterine sarcomas express KIT protein but lack mutation(s) in exon 11 or 17 of cKIT. Gynecol Oncol. 2003;91:9–14.

    CAS  PubMed  Google Scholar 

  142. Serrano C, Mackintosh C, Herrero D, et al. Imatinib is not a potential alternative treatment for uterine leiomyosarcoma. Clin Cancer Res. 2005;11:4977–9, author reply 9–80.

    CAS  PubMed  Google Scholar 

  143. Dalal KM, Antonescu CR, Singer S. Diagnosis and management of lipomatous tumors. J Surg Oncol. 2008;97:298–313.

    PubMed  Google Scholar 

  144. Kim EY, Kim SJ, Choi D, et al. Recurrence of retroperitoneal liposarcoma: imaging findings and growth rates at follow-up CT. AJR. 2008;191:1841–6.

    PubMed  Google Scholar 

  145. Milic DJ, Rajkovic MM, Pejcic VD. Primary omental liposarcoma presenting as an incarcerated inguinal hernia. Hernia. 2005;9(1):88–9.

    CAS  PubMed  Google Scholar 

  146. Fotiadis C, Zografos GN, Karatzas G, Papachristodoulou A, Sechas MN. Recurrent liposarcomas of the abdomen and retroperitoneum: three case reports. Anticancer Res. 2000;20(1B):579–83.

    CAS  PubMed  Google Scholar 

  147. Jaques DP, Coit DG, Hajdu SI, Brennan MF. Management of primary and recurrent soft-tissue sarcoma of the retroperitoneum. Ann Surg. 1990;212:51–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Singer S, Corson JM, Demetri GD, et al. Prognostic factors predictive of survival for truncal and retroperitoneal soft-tissue sarcoma. Ann Surg. 1995;221:185–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Henricks WH, Chu YC, Goldblum JR, et al. Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol. 1997;21:271–81.

    CAS  PubMed  Google Scholar 

  150. Lee A, Thway K, Huang PH, Jones RL. Clinical and molecular spectrum of liposarcoma. J Clin Oncol. 2018;36(2):151–9.

    CAS  PubMed  Google Scholar 

  151. Thway K, Flora R, Shah C, Olmos D, Fisher C. Diagnostic utility of p16, CDK4, and MDM2 as an immunohistochemical panel in distinguishing well-differentiated and dedifferentiated liposarcomas from other adipocytic tumors. Am J Surg Pathol. 2012;36(3):462–9.

    PubMed  Google Scholar 

  152. Wei S, Henderson-Jackson E, Qian X, Bui MM. Soft tissue tumor immunohistochemistry update: illustrative examples of diagnostic pearls to avoid pitfalls. Arch Pathol Lab Med. 2017;141(8):1072–91.

    PubMed  Google Scholar 

  153. Fletcher CDM, Hogendoorn PCW, Mertens F, et al. WHO classification of tumours of soft tissue and bone. Washington, DC: IARC Press; 2013.

    Google Scholar 

  154. Crozat A, Åman P, Mandahl N, et al. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature. 1993;363:640–4.

    CAS  PubMed  Google Scholar 

  155. Fiore M, Grosso F, Lo Vullo S, et al. Myxoid/round cell and pleomorphic liposarcomas: prognostic factors and survival in a series of patients treated at a single institution. Cancer. 2007;109:2522–31.

    PubMed  Google Scholar 

  156. Conyers R, Young S, Thomas DM. Liposarcoma: molecular genetics and therapeutics. Sarcoma. 2011;2011:483154.

    PubMed  Google Scholar 

  157. Müllauer L. Milestones in pathology-from histology to molecular biology. Memo. 2017;10(1):42–5. https://doi.org/10.1007/s12254-016-0307-z. Epub 9 Jan 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Buermans HP, den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta. 2014;1842(10):1932–41. https://doi.org/10.1016/j.bbadis.2014.06.015.

    Article  CAS  PubMed  Google Scholar 

  159. Harrington CT, Lin EI, Olson MT, Eshleman JR. Fundamentals of pyrosequencing. Arch Pathol Lab Med. 2013;137(9):1296–303. https://doi.org/10.5858/arpa.2012-0463-RA.

    Article  CAS  PubMed  Google Scholar 

  160. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. https://doi.org/10.1200/JCO.2012.45.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34. https://doi.org/10.1038/nrc3261.

    Article  CAS  PubMed  Google Scholar 

  162. Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem. 2015;61(1):64–71. https://doi.org/10.1373/clinchem.2014.223040.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Glehen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatt, A., Parikh, L., Mishra, S., Glehen, O. (2020). Approach to a Patient with Peritoneal Metastases with Unknown Primary Site: Focus on Histopathological Evaluation. In: Glehen, O., Bhatt, A. (eds) Pathology of Peritoneal Metastases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3773-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3773-8_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3772-1

  • Online ISBN: 978-981-15-3773-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics