Skip to main content

Mechanisms of Peritoneal Metastasis Formation

  • Chapter
  • First Online:
Pathology of Peritoneal Metastases

Abstract

Mechanisms of peritoneal metastasis (PM) formation remain unclear. It has long been considered that the establishment of PM is a multi-step process. Here are the recent new concepts of the formation of PM, in terms of three patterns of PM: trans-mesothelial, trans-lymphatic, and superficial growing metastasis. Trans-mesothelial metastasis is established through detachment of cancer cells, adhesion on distant peritoneal surface, invasion into submesothelial tissue, and proliferation. Trans-lymphatic metastasis develops by the migration of peritoneal free cancer cells (PFCCs) into omental milky spots and/or initial lymphatic vessels. Superficial growing metastasis is established by growing of PFCCs on the peritoneal surface after trapping or adhesion to pocket-like structure or pouch in pelvic cavity or in peritoneum absorbed by negative pressure generated omental milky spots or initial lymphatic vessels.

Trans-mesothelial and trans-lymphatic metastasis are found in high-grade carcinomas, such as gastric, colorectal, ovarian, gall bladder, and pancreas caner. In contrast, superficial growing metastasis is found in PM from appendiceal mucinous neoplasm, mesothelioma, granulosa cell tumor, multicystic mesothelioma, and hepatoma.

Surgeons should perform peritonectomy in accordance with the metastatic pattern and biological behavior of each tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jayne D. Molecular biology of peritoneal carcinomatosis. In: Ceelen WP, editor. Cancer treatment and research. New York: Springer; 2007. p. 21–31.

    Google Scholar 

  2. Yonemura Y, Canbay E, Liu Y, et al. Trans-lymphatic metastasis in peritoneal dissemination. J Gastroint Dig Syst. 2013;S12. https://doi.org/10.4172/2161-069X.S12-007.

  3. Sugarbaker PH. Observation concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. In: Sugarbaker PH, editor. Peritoneal carcinomatosis: a multidisciplinary approach. Boston: Kluwer Academic Publisher; 1997. p. 79–100.

    Google Scholar 

  4. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol. 2004;286:C1213–28.

    CAS  PubMed  Google Scholar 

  5. Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulation tight junction trafficking and endothelial growth factor-induced permeability. J Biol Chem. 2009;284(31):21036–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuo WL, Lee LY, Wu CM, et al. Differential expression of claudin-4 between intestinal and diffuse-type gastric cancer. Oncol Rep. 2005;16:729–34.

    Google Scholar 

  7. Ohotani S, Terashima M, Satoh J, et al. Expression of tight-junction-associated proteins in human gastric cancer. Downregulation of claudin-4 correlates with tumor aggressiveness and survival. Gastric Cancer. 2009;12:43–51.

    Google Scholar 

  8. Pokutta S, Herrenknecht K, Kemler R, Engel J. Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem. 1994;223:1019–26.

    CAS  PubMed  Google Scholar 

  9. Gooding JM, Yap KL, Ikura M. The cadherin-catenin complex as a focal point of cell adhesion and signaling: new insights from three-dimensional structures. Bioessays. 2004;26:497–511.

    CAS  PubMed  Google Scholar 

  10. Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20:3199–214.

    CAS  PubMed  Google Scholar 

  11. Shimoyama Y, Hirohashi S. Expression of E- and P-cadherin in gastric carcinoma. Cancer Res. 1991;51:2185–92.

    CAS  PubMed  Google Scholar 

  12. Yasui W, Kuniyasu H, Akama Y, et al. Expression of E-cadherin, α- and β-catenins in human gastric carcinoma: correlation with histology and tumor progression. Oncol Rep. 1995;2:111–7.

    CAS  PubMed  Google Scholar 

  13. Yasui W, Sano T, Nishimura K, et al. Expression of P-cadherin in gastric carcinomas and its reduction in tumor progression. Int J Cancer. 1993;54:49–52.

    CAS  PubMed  Google Scholar 

  14. Khoursheed MA, Mathew TC, Makar PR, et al. Expression of E-cadherin in human colorectal cancer. Surgeon. 2003;1:86–91.

    CAS  PubMed  Google Scholar 

  15. Dorudi S, Sheffield JP, Poulsom R, et al. E-cadherin expression in colorectal cancer. An immunohistochemical and in situ hybridization study. Am J Pathol. 1993;142(2):981–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dangerfield J, Larbi KY, Huang MT, et al. PECAM-1 (CD31) homophilic interaction up-regulates alpha6 beta 1 on transmigrated neutrophils in vivo and plays a functional role in the ability of alpha 6 integrins to mediate leukocyte migration through the perivascular basement membrane. J Exp Med. 2002;196:1201–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Leary R, Gill A, et al. A three-dimensional in-vitro model for the study of peritoneal tumour metastasis. Clin Exp Metastasis. 1999;17:515–23.

    PubMed  Google Scholar 

  18. Dejana E, Breviario F, Caveda L. Leukocyte-endothelial cell adhesive receptor. Clin Exp Rheumatol. 1994;12(Suppl 10):S25–8.

    PubMed  Google Scholar 

  19. Kroon J, Schaefer A, van Rijssel J, et al. Inflammation-sensitive myosin-X functionally supports leukocytes extravasation by Cdc42-mediated IAM-1-rich endothelial filopodia formation. J Immunol. 2018;200(5):1790–101.

    CAS  PubMed  Google Scholar 

  20. Klein CL, Bittinger F, Skarke CC, et al. Effect of cytokines on the expression of cell adhesion molecules by cultured human omental mesothelial cells. Pathobiology. 1995;63:204–12.

    CAS  PubMed  Google Scholar 

  21. Van Marck V, Stove C, van den Boosche K, et al. P-cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res. 2005;65(19):8774–83.

    PubMed  Google Scholar 

  22. Usui A, Ko SY, Barengo N, et al. P-cadherin promotes ovarian cancer dissemination through tumor cell aggregation and tumor-peritoneal interactions. Mol Cancer Res. 2014;12(4):504–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirano H, Screaton GR, Bell MV, et al. CD44 isoform expression mediated by alternative splicing: tissue-specific regulation in mice. Int Immunol. 1994;6(1):49–59.

    CAS  PubMed  Google Scholar 

  24. Harada N, Mizoi T, Kinouchi M, et al. Introduction of antisense CD44 CDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon cancer carcinoma cells. Int J Cancer. 2001;91:67–75.

    CAS  PubMed  Google Scholar 

  25. Koyama T, Yashiro M, Inoue T, et al. TGF-beta secreted by gastric fibroblasts up-regulates CD44H expression and stimulates the peritoneal metastatic ability of scirrhous gastric cancer cells. Int J Oncol. 2000;16:355–62.

    CAS  PubMed  Google Scholar 

  26. Chhieng DC, Yee H, Cangiarella JF, et al. Use of E-cadherin and CD44 aids in the differentiation between reactive mesothelial cells and carcinoma cells in pelvic washing. Cancer. 2000;90:299–306.

    CAS  PubMed  Google Scholar 

  27. Nakamori S, Furukawa Y, Hiratsuka M, et al. Expression of carbohydrate antigen sialyl Le(a): a new functional prognostic factor in gastric cancer. J Clin Oncol. 1997;15:816–25.

    CAS  PubMed  Google Scholar 

  28. Sanusi AA, Zweers MM, Weening JJ, et al. Expression of cancer antigen by peritoneal mesothelial cells is not influenced by duration of peritoneal dialysis. Perit Dial Int. 2001;21(5):495–500.

    CAS  PubMed  Google Scholar 

  29. Scholler N, Urban N. CA124 in ovarian cancer. Biomarker Med. 2007;1(4):513–23.

    CAS  Google Scholar 

  30. Hassan R, Ho M. Mesothelin targeted immunotherapy. Eur J Cancer. 2008;44:46–53.

    CAS  PubMed  Google Scholar 

  31. Stoeck A, Schlich S, Issa Y, et al. L1 on ovarian carcinoma cells is a binding partner for neuropilin-1 on mesothelial cells. Cancer Lett. 2005;8:212–26.

    Google Scholar 

  32. Friedli A, Fischer E, Novak-Hofer I, et al. The soluble form of the cancer-associated L1 cell adhesion molecules is a pro-angiogenic factor. Int J Biochem Cell Biol. 2009;41:1572–80.

    CAS  PubMed  Google Scholar 

  33. Bird SD. Mesothelial primary cilia of peritoneal other serosal surface. Cell Biol Int. 2004;28:151–9.

    PubMed  Google Scholar 

  34. Saed GM, Zhang W, Chegini N, et al. Alteration of type I and III collagen expression in human peritoneal mesothelial cells in response to hypoxia and transforming growth factor-beta1. Wound Repair Regen. 1999;7:504–10.

    CAS  PubMed  Google Scholar 

  35. Yao V, Plattell C, Hall JC. Peritoneal mesothelial cells inflammatory related cytokines. ANZ J Surg. 2004;74(11):997–1002.

    PubMed  Google Scholar 

  36. Akedo H, Shinkai K, Mukai M, et al. Interaction of rat ascites hepatoma cells with cultured mesothelial cell layers: a model for tumor invasion. Cancer Res. 1986;46:2416–22.

    CAS  PubMed  Google Scholar 

  37. Jayn DG, O’Leary R, Gill A, et al. A three-dimensional in-vitro model for the study of peritoneal tumor metastasis. Clin Exp Metastasis. 1999;17:515–23.

    Google Scholar 

  38. Lanfrancone L, Boraschi D, Ghiara P, et al. Human peritoneal mesothelial cells produce many cytokines (granulocyte colony-stimulating factor (CSF), granulocyte-monocyte-CSF, macrophage-CSF, interleukin-1, and IL-6) and are activated and stimulated to grow by IL-1. Blood. 1992;80(11):2835–42.

    CAS  PubMed  Google Scholar 

  39. Hight-Warburton W, Parsons M. Regulation of cell migration by α4 and α9 integrins. Biochem J. 2019;476(4):705–18. https://doi.org/10.1042/BCJ20180415.

    Article  CAS  PubMed  Google Scholar 

  40. Yonemura Y, Endou Y, Tamaguchi T, et al. Roles of VLA-2 and VLA-3 on the formation of peritoneal dissemination in gastric cancer. Int J Oncol. 1996;8:925–31.

    CAS  PubMed  Google Scholar 

  41. Kawamura T, Endo Y, Yonemura Y, et al. Significance of integrin alpha2/beta1 in peritoneal dissemination of a human gastric cancer xenograft model. Int J Oncol. 2001;18:809–15.

    CAS  PubMed  Google Scholar 

  42. Casey RC, Skubitz AP. CD44 and beta1 integrins mediate ovarian carcinoma cell migration toward extracellular matrix proteins. Clin Exp Metastasis. 2000;18:67–75.

    CAS  PubMed  Google Scholar 

  43. Pan Y, Bi F, Liu Y, et al. Expression of seven main Rho family members in gastric carcinoma. Biochem Biophys Res Commun. 2004;315:686–91.

    CAS  PubMed  Google Scholar 

  44. Selinfreund RH, Barger SW, Welsh MJ, et al. Antisense inhibition of glial S100 beta production results in alteration in cell morphology, cytoskeletal organization, and cell proliferation. J Cell Biol. 1990;111:2021–8.

    CAS  PubMed  Google Scholar 

  45. Kim EJ, Helman DM. Characterization of the metastasis-associated protein, S100 A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem. 2003;278:30063–73.

    CAS  PubMed  Google Scholar 

  46. Yonemura Y, Endou Y, Kimura K, et al. Inverse expression of S100A4 and E-cadherin is associated with metastatic potential in gastric cancer. Clin Cancer Res. 2000;6:4234–42.

    CAS  PubMed  Google Scholar 

  47. Moriyama M, Endou Y, Yonemura Y, et al. S100A4 regulates E-cadherin expression in oral squamous cell carcinoma. Cancer Lett. 2005;230:211–8.

    Google Scholar 

  48. Warn R, Harveay P, Warn A, et al. HGF/SF induces mesothelial cell migration and proliferation by autocrine paracrine pathways. Exp Cell Res. 2001;267:258–66.

    CAS  PubMed  Google Scholar 

  49. Itoh K, Yoshioka K, Akedo H, et al. An essential part for rho-associated linease in the transcellular invasion of tumor cells. Nat Med. 1999;5:221–5.

    CAS  PubMed  Google Scholar 

  50. Taniguchi K, Yonemura Y, Nojima N, et al. The relation between the growth patterns of gastric carcinoma and the expression of hepatocyte growth factor receptor (c-met). Autocrine motility factor receptor and urokinase-type plasminogen receptor. Cancer. 1998;82:2112–22.

    CAS  PubMed  Google Scholar 

  51. Van Grevenstein WM, Hofland LJ, Marquet RL, et al. The expression of adhesion molecules and the influence of inflammatory cytokines on the adhesion of human pancreatic carcinoma cells to mesothelial monolayers. Pancreas. 2006;32:39–402.

    Google Scholar 

  52. Smyth EC, Scafani F, Cunningham D. Emerging molecular targets in oncology: clinical potential of MET/hepatocyte growth-factor inhibitors. Onco Targets Ther. 2014;12(7):1001–10014.

    Google Scholar 

  53. Baron MA. Structure of intestinal peritoneum in man. Am J Anat. 1941;69:439–97.

    Google Scholar 

  54. Jain RK. Barrier to drug delivery in solid tumors. Sci Am. 1994;7:42–9.

    Google Scholar 

  55. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interaction. Crit Rev Biochem Mol Biol. 1992;27(1–2):93–127.

    CAS  PubMed  Google Scholar 

  56. Arikawa-Hasegawa E, Le AH, Nihino I, et al. Structure and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome with myotonic myopathy and chondrodysplasia. Am J Hum Genet. 2002;70(5):1368–75.

    Google Scholar 

  57. Yonemura Y, Nojima N, Kaji M, et al. E-cadherin and urokinase-type plasminogen activator tissue status in gastric cancer. Cancer. 1995;76:941–53.

    CAS  PubMed  Google Scholar 

  58. Ossowski L, Reich E. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell. 1980;50:527–35.

    Google Scholar 

  59. Noguchi-Takino M, Endou Y, Yonemura Y, et al. Relation between expression of plasminogen activator system and metastatic ability in human cancer. Int J Oncol. 1994;8:97–105.

    Google Scholar 

  60. Itoh H, Yonemura Y, Fujita H, et al. Prognostic relevance of urokinase-type plasminogen activator system and plasminogen activator PAI-1 and PAI-2 in gastric cancer. Virchows Arch. 1996;427:487–96.

    Google Scholar 

  61. Zhao L, Yasumoto K, Kawashima A, et al. Paracrine activation of MET promotes peritoneal carcinomatosis in scirrhous gastric cancer. Cancer Sci. 2013;104(12):1640–6.

    CAS  PubMed  Google Scholar 

  62. Poincloux R, Lizarraga F, Chavrier P. Matrix invasion by tumor cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci. 2009;122:3015–24.

    CAS  PubMed  Google Scholar 

  63. Liu G, Xiong D, Xiao R, et al. Prognostic role of fibroblast growth factor receptor 2 in human solid tumors: a systematic review and meta-analysis. Tumor Biol. 2017;39(6):101042831770744. https://doi.org/10.1177/1010428317707424.

    Article  CAS  Google Scholar 

  64. Katoh M, Hattori Y, Sasaki H, et al. K-sam gene encodes secreted as well as transmembrane receptor tyrosin kinase. Proc Natl Acad Sci USA. 1992;89:2960–4.

    CAS  PubMed  Google Scholar 

  65. Toyokawa T, Yashiro M, Hirakawa K. Co-expression of keratinocyte growth factor and K-sam is an independent prognostic factor in gastric cancer. Oncol Rep. 2009;21:875–80.

    PubMed  Google Scholar 

  66. Hisamatsu Y, Oki E, Otsu H, et al. Effect of EGFR and p-AKT overexpression on chromosomal instability in gastric cancer. Ann Surg Oncol. 2016;23(6):1986–92. https://doi.org/10.1245/s10434-016-5097-3. Epub 4 Feb 2016.

    Article  PubMed  Google Scholar 

  67. Zhenfang DU, Christine M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58. https://doi.org/10.1186/s12943-018-0782-4.

    Article  CAS  Google Scholar 

  68. Yonemura Y, Sugiyama K, Fushida S, et al. Tissue status of epidermal growth factor and its receptor as an indicator of poor prognosis in patients with gastric cancer. Anal Cell Pathol. 1991;3:343–50.

    CAS  PubMed  Google Scholar 

  69. Sachs M, Brohmann H, Zechner D, et al. Essential role of Gab1 for signaling by the c-met receptor in vivo. J Cell Biol. 2000;150:1375–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mac PC, Jagadeeswaran R, Jagadeesh S, et al. Functional expression and mutation of c-Met and its therapeutic inhibitor with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–788.

    Google Scholar 

  71. Kuniyasu H, Yasui W, Kitadai Y, et al. Frequent amplification of the c-met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–32.

    CAS  PubMed  Google Scholar 

  72. Puri N, Khramtsov A, Ahmed S, et al. A selective small molecule inhibitor of c-Met, PHA665752, inhibits tumorigenicity and angiogenesis in mouse lung cancer xenograft. Cancer Res. 2007;67:3529–34.

    CAS  PubMed  Google Scholar 

  73. Goldoni S, Humphries A, Nystrom A, et al. Decorin is a novel antagonistic ligand of the Met receptor. J Cell Biol. 2009;18:743–54.

    Google Scholar 

  74. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006;70:1469–80.

    CAS  Google Scholar 

  75. Thurston Q. Role of angiopoietins and Tie receptor tyrosin kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res. 2003;314:61–8.

    CAS  PubMed  Google Scholar 

  76. Bobik A, Tkachuk V. Metalloproteinases and plasminogen activators in vessel remodeling. Curr Hypertens Rep. 2003;5:466–72.

    PubMed  Google Scholar 

  77. Ninomiya S, Inomata M, Tajima M, et al. Effect of bevacizumab, a humanized monoclonal antibody to vascular endothelial growth factor on peritoneal metastasis of MKN-45P human gastric cancer in mice. J Surg Res. 2009;15:196–202.

    Google Scholar 

  78. Yonemura Y. Trans-lymphatic metastasis. In: Yonemura Y, editor. Atlas and principles of peritonectomy for peritoneal surface malignancy. Kyoto: NPO to Support Peritoneal Surface Malignancy; 2012. p. 188–206. ISBN: 978-4-9906097-0-2.

    Google Scholar 

  79. Yonemura Y, Canbay E, Endou Y, et al. Mechanisms of the formation of peritoneal surface malignancy on omental milky spots from low grade appendiceal mucinous carcinoma. J Clin Exp Oncol. 2014;3:3. https://doi.org/10.4172/2324-9110.1000130.

    Article  Google Scholar 

  80. Tsujimoto H, Takhashi T, Hagiwara A, et al. Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labeled cells. Br J Cancer. 1995;71:468–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shimotsuma M, Takahashi T, Kawata M, Dux K. Cellular subset of the milky spots in the human greater omentum. Cell Tissue Res. 1991;264:599–601.

    CAS  PubMed  Google Scholar 

  82. Yokota T, Saito T, Harushima Y, et al. Lymph-node staining with activated carbon CH40: a new method for axillary lymph node dissection in breast cancer. JCC. 1999;43(3):191–6.

    Google Scholar 

  83. Diaz-Flores L, Gutierrez R, Garcia MP, et al. CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol. 2014;29:831–70.

    CAS  PubMed  Google Scholar 

  84. Yonemura Y, Canbay E, Sako S, et al. Multicystic mesothelioma has malignant potential: its grounds and mechanisms of peritoneal metastasis. J Periton (and Other Serosal Surface). 2017;2(52):21–6.

    Google Scholar 

  85. Yonemura Y. Peritoneum tends to be involved by cancer cells. In: Yonemura Y, editor. Comprehensive treatment for peritoneal surface malignancy with an intent of cure. Kyoto: NPO to Support Peritoneal Surface Malignancy & Asian School of Peritoneal Surface Malignancy Treatment; 2018. p. 38–55. ISBN: 978-409906097-3-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Yonemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yonemura, Y. et al. (2020). Mechanisms of Peritoneal Metastasis Formation. In: Glehen, O., Bhatt, A. (eds) Pathology of Peritoneal Metastases. Springer, Singapore. https://doi.org/10.1007/978-981-15-3773-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3773-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3772-1

  • Online ISBN: 978-981-15-3773-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics