Skip to main content

Early Prediction of Brain Tumor Classification Using Convolution Neural Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence, Security and Internet of Things (ICCISIoT 2019)

Abstract

Automatic brain tumor classification of tissue types plays a significant task in computer-aided medical diagnosis. In recent years, classification of brain tumors types like meningioma (T1), glioma (T2), and pituitary tumor (T3). Convolution Neural Networks (CNN), which trains the image into increasingly sub-dividing as filter blocks for the fine-tune of feature extraction from each sub-region, exhibits excellent results and successfully used for object detection and classification. In this paper, we present an approach to improve tumor detection and classification performance. Initially, the tumor area is clustered with the fuzzy c-means algorithm for discovering the surrounded tumor tissues and also gives important clues for tumor types. Second, the Canny edge detection applied for the tumor region. Third, the spectral residual for saliency map from the tumor region. Finally, we combine all three areas into one representation for CNN training and testing on a large dataset, which gives accuracies of 91.40%. These experimental results show that the proposed method is realistic and useful for the classification of brain tumors types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aslam, A., Khan, E., Beg, M.S.: Improved edge detection algorithm for brain tumor segmentation. Procedia Comput. Sci. 58, 430–437 (2015)

    Article  Google Scholar 

  2. Shanthakumar, P., Ganesh Kumar, P.: Computer aided brain tumor detection system using watershed segmentation techniques. Int. J. Imaging Syst. Technol. 25(4), 297–301 (2015)

    Article  Google Scholar 

  3. Natteshan, N.V.S., Angel Arul Jothi, J.: Automatic classification of brain MRI images using SVM and neural network classifiers. In: El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 19–30. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11218-3_3

    Chapter  Google Scholar 

  4. Dandıl, E., Çakıroğlu, M., Ekşi, Z.: Computer-aided diagnosis of malign and benign brain tumors on MR images. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 157–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09879-1_16

    Chapter  Google Scholar 

  5. Yazdani, S., Yusof, R., Karimian, A., Riazi, A.H., Bennamoun, M.: A unified framework for brain segmentation in MR images. Comput. Math. Methods Med. 2015, 829893 (2015)

    Article  Google Scholar 

  6. Nabizadeh, N., Kubat, M.: Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng. 45, 286–301 (2015)

    Article  Google Scholar 

  7. Zikic, D., Ioannou, Y., Brown, M. and Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014)

    Google Scholar 

  8. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winning contribution, pp. 31–35 (2014)

    Google Scholar 

  9. Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian, Q.: Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans. Image Process. 22(12), 5071–5084 (2013)

    Article  MathSciNet  Google Scholar 

  10. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)

    Article  Google Scholar 

  11. Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15745-5_19

    Chapter  Google Scholar 

  12. Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 388–395. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45786-0_48

    Chapter  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_26

    Chapter  Google Scholar 

  15. Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  16. Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32–32 (2008)

    Article  Google Scholar 

  17. Rajkumar, R., Arunnehru, J.: A study on convolutional neural networks with active video tubelets for object detection and classification. In: Wang, J., Reddy, G.R.M., Prasad, V.K., Reddy, V.S. (eds.) Soft Computing and Signal Processing. AISC, vol. 898, pp. 107–115. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3393-4_12

    Chapter  Google Scholar 

  18. Arunnehru, J., Chamundeeswari, G., Bharathi, S.P.: Human action recognition using 3D convolutional neural networks with 3D motion cuboids in surveillance videos. Procedia Comput. Sci. 133, 471–477 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Arunnehru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arunnehru, J., Kumar, A., Verma, J.P. (2020). Early Prediction of Brain Tumor Classification Using Convolution Neural Networks. In: Saha, A., Kar, N., Deb, S. (eds) Advances in Computational Intelligence, Security and Internet of Things. ICCISIoT 2019. Communications in Computer and Information Science, vol 1192. Springer, Singapore. https://doi.org/10.1007/978-981-15-3666-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3666-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3665-6

  • Online ISBN: 978-981-15-3666-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics