Skip to main content

The Epigenetic Regulation of Scleroderma and Its Clinical Application

  • Chapter
  • First Online:
Book cover Epigenetics in Allergy and Autoimmunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

Scleroderma (systemic sclerosis; SSc) is a complex and highly heterogeneous multisystem rheumatic disease characterized by vascular abnormality, immunologic derangement, and excessive deposition of extracellular matrix (ECM) proteins. To date, the etiology of this life-threatening disorder remains not fully clear. More and more studies show epigenetic modifications play a vital role. The aberrant epigenetic status of certain molecules such as Fli-1, BMPRII, NRP1, CD70, CD40L, CD11A, FOXP3, KLF5, DKK1, SFRP1, and so on contributes to the pathogenesis of progressive vasculopathy, autoimmune dysfunction, and tissue fibrosis in SSc. Meanwhile, numerous miRNAs including miR-21, miR-29a, miR-196a, miR-202-3p, miR-150, miR-let-7a, and others are involved in the process. In addition, the abnormal epigenetic biomarker levels of CD11a, Foxp3, HDAC2, miR-30b, miR-142-3p, miR-150, miR-5196 in SSc are closely correlated with disease severity. In this chapter, we not only review new advancements on the epigenetic mechanisms involved in the pathogenesis of SSc and potential epigenetic biomarkers, but also discuss the therapeutic potential of epigenetic targeting therapeutics such as DNA methylation inhibitors, histone acetylase inhibitors, and miRNA replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsaleh G, Francois A, Philippe L, Gong YZ, Bahram S, Cetin S, Pfeffer S, Gottenberg JE, Wachsmann D, Georgel P, Sibilia J (2014) MiR-30a-3p negatively regulates BAFF synthesis in systemic sclerosis and rheumatoid arthritis fibroblasts. PLoS ONE 9:10

    Article  CAS  Google Scholar 

  • Altorok N, Wang Y, Kahaleh B (2014) Endothelial dysfunction in systemic sclerosis. Curr Opin Rheumatol 26:6

    Article  CAS  Google Scholar 

  • Altorok N, Tsou PS, Coit P, Khanna D, Sawalha AH (2015) Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis 74:8

    Article  CAS  Google Scholar 

  • Arnett FC, Cho M, Chatterjee S, Aguilar MB, Reveille JD, Mayes MD (2001) Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheumatol 44:6

    Article  Google Scholar 

  • Artlett CM, Sassi-Gaha S, Hope JL, Feghali-Bostwick CA, Katsikis PD (2017) Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res Therapy 19:1

    Article  CAS  Google Scholar 

  • Asano Y (2015) Epigenetic suppression of Fli1, a potential predisposing factor in the pathogenesis of systemic sclerosis. Int J Biochem Cell Biol 67:86–91

    Article  CAS  Google Scholar 

  • Asano Y, Bujor AM, Trojanowska M (2010) The impact of Fli1 deficiency on the pathogenesis of systemic sclerosis. J Dermatol Sci 59:3

    Article  CAS  Google Scholar 

  • Aslani S, Sobhani S, Gharibdoost F, Jamshidi A, Mahmoudi M (2018) Epigenetics and pathogenesis of systemic sclerosis; the ins and outs. Hum Immunol 79:3

    Article  CAS  Google Scholar 

  • Babalola O, Mamalis A, Lev-Tov H, Jagdeo J (2013) The role of microRNAs in skin fibrosis. Arch Dermatol Res 305:9

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:2

    Article  Google Scholar 

  • Bergmann C, Distler JH (2015) Systemic sclerosis—an update. Dtsch Med Wochenschr 140:7

    Google Scholar 

  • Castelino FV, Varga J (2013) Current status of systemic sclerosis biomarkers: applications for diagnosis, management and drug development. Expert Rev Clin Immunol. 9:11

    Article  CAS  Google Scholar 

  • Chen S, Pu W, Guo S, Jin L, He D, Wang J (2019) Genome-wide DNA methylation profiles reveal common epigenetic patterns of interferon-related genes in multiple autoimmune diseases. Front Genet 10:223

    Google Scholar 

  • Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM (2014) MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-beta activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One 9:12

    Article  CAS  Google Scholar 

  • Ciechomska M, Zarecki P, Merdas M, Swierkot J, Morgiel E, Wiland P, Maslinski W, Bogunia-Kubik K (2017) The role of microRNA-5196 in the pathogenesis of systemic sclerosis. Eur J Clin Invest 47:8

    Article  CAS  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Dees C, Schlottmann I, Funke R, Distler A, Palumbo-Zerr K, Zerr P, Lin NY, Beyer C, Distler O, Schett G, Distler JH (2014) The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis 73:6

    Article  CAS  Google Scholar 

  • Desbois AC, Cacoub P (2016) Systemic sclerosis: an update in 2016. Autoimmun Rev 15:5

    Article  Google Scholar 

  • Ding W, Pu W, Wang L, Jiang S, Zhou X, Tu W, Yu L, Zhang J, Guo S, Liu Q, Ma Y, Chen S, Wu W, Reveille J, Zou H, Jin L, Wang J (2017) Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4(+) and CD8(+) T Cells. J Investig Derm 138(5):1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Dong JT, Chen C (2009) Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci 66:16

    Article  CAS  Google Scholar 

  • Fan S, Zhang X (2009) CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun 383:4

    Article  CAS  Google Scholar 

  • Feghali-Bostwick C, Medsger Jr TA, Wright TM (2013) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheumatol 48:7

    Google Scholar 

  • Ghosh AK, Bhattacharyya S, Lafyatis R, Farina G, Yu J, Thimmapaya B, Wei J, Varga J (2013) p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J Investig Dermatology 133:5

    Article  CAS  Google Scholar 

  • Gillespie J, Ross RL, Corinaldesi C, Esteves F, Derrett-Smith E, McDermott MF, Doody GM, Denton CP, Emery P, Del GF (2018) TGFβ activation primes canonical Wnt signaling through the downregulation of AXIN2. Arthritis Rheumatol 70:6

    Article  CAS  Google Scholar 

  • Giovannetti A, Rosato E, Renzi C, Maselli A, Gambardella L, Giammarioli AM, Palange P, Paoletti P, Pisarri S, Salsano F, Malorni Wand, Pierdominici M (2010) Analyses of T cell phenotype and function reveal an altered T cell homeostasis in systemic sclerosis. Correlations with disease severity and phenotypes. Clin Immunol 137:1

    Article  CAS  PubMed  Google Scholar 

  • Hattori M, Yokoyama Y, Hattori T, Motegi S, Amano H, Hatada I, Ishikawa O (2015) Global DNA hypomethylation and hypoxia-induced expression of the ten eleven translocation (TET) family, TET1, in scleroderma fibroblasts. Exp Dermatol 24:11

    Article  CAS  Google Scholar 

  • Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H (2012) TGF-beta-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J Immunol 188:7

    Article  CAS  Google Scholar 

  • Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, Fukushima S, Inoue Y, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H (2013) miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin beta3. Am J Pathol 182:1

    Article  CAS  Google Scholar 

  • Huber LC, Distler JH, Moritz F, Hemmatazad H, Hauser T, Michel BA, Gay RE, Matucci-Cerinic M, Gay S, Distler O, Jungel A (2007) Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum 56:8

    Google Scholar 

  • Ichimura Y, Asano Y, Akamata K, Noda S, Taniguchi T, Takahashi T, Toyama T, Tada Y, Sugaya M, Sato S, Kadono T (2015) Progranulin overproduction due to Fli-1 deficiency contributes to the resistance of dermal fibroblasts to tumor necrosis factor in systemic sclerosis. Arthritis Rheumatol 67:12

    Article  CAS  Google Scholar 

  • Ichimura Y, Asano Y, Akamata K, Takahashi T, Noda S, Taniguchi T, Toyama T, Aozasa N, Sumida H, Kuwano Y, Yanaba K, Tada Y, Sugaya M, Sato S, Kadono T (2014) Fli1 deficiency contributes to the suppression of endothelial CXCL5 expression in systemic sclerosis. Arch Dermatol Res 306:4

    Article  CAS  Google Scholar 

  • Iwamoto N, Vettori S, Maurer B, Brock M, Pachera E, Jungel A, Calcagni M, Gay RE, Whitfield ML, Distler JH, Gay S, Distler O (2016) Downregulation of miR-193b in systemic sclerosis regulates the proliferative vasculopathy by urokinase-type plasminogen activator expression. Ann Rheum Dis 75:1

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Xiao R, Lian X, Kanekura T, Luo Y, Yin Y, Zhang G, Yang Y, Wang Y, Zhao M, Lu Q (2012) Demethylation of TNFSF7 contributes to CD70 overexpression in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 143:1

    Article  CAS  Google Scholar 

  • Kajihara I, Jinnin M, Yamane K, Makino T, Honda N, Igata T, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H (2012) Increased accumulation of extracellular thrombospondin-2 due to low degradation activity stimulates type I collagen expression in scleroderma fibroblasts. Am J Pathol 180:2

    Article  CAS  Google Scholar 

  • Kataoka H, Yasuda S, Fukaya S, Oku K, Horita T, Atsumi T, Koike T (2015) Decreased expression of Runx1 and lowered proportion of Foxp3(+) CD25(+) CD4(+) regulatory T cells in systemic sclerosis. Mod Rheumatol 25:1

    Article  CAS  Google Scholar 

  • Koba S, Jinnin M, Inoue K, Nakayama W, Honda N, Makino K, Kajihara I, Makino T, Fukushima S, Ihn H (2013) Expression analysis of multiple microRNAs in each patient with scleroderma. Exp Dermatol 22:7

    Article  CAS  Google Scholar 

  • Kowal-Bielecka O (2010) An update on systemic sclerosis. Ann Acad Med Stetin 56(Suppl 1):80–82

    Google Scholar 

  • Kramer M, Dees C, Huang J, Schlottmann I, Palumbo-Zerr K, Zerr P, Gelse K, Beyer C, Distler A, Marquez VE, Distler O, Schett G, Distler JH (2013) Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann Rheum Dis 72:4

    Article  CAS  Google Scholar 

  • Kuo CF, See LC, Yu KH, Chou IJ, Tseng WY, Chang HC, Shen YM, Luo SF (2011) Epidemiology and mortality of systemic sclerosis: a nationwide population study in Taiwan. Scand J Rheumatol 40:5

    Google Scholar 

  • Kuwatsuka Y, Ogawa F, Iwata Y, Komura K, Muroi E, Hara T, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Sato S (2009) Decreased levels of autoantibody against histone deacetylase 3 in patients with systemic sclerosis. Autoimmunity 42:2

    Article  CAS  Google Scholar 

  • Lei W, Luo Y, Lei W, Luo Y, Yan K, Zhao S, Li Y, Qiu X, Zhou Y, Long H, Zhao M, Liang Y, Su Y, Lu Q (2009) Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand J Rheumatol 38:5

    Article  Google Scholar 

  • Li H, Yang R, Fan X, Gu T, Zhao Z, Chang D, Wang W (2012) MicroRNA array analysis of microRNAs related to systemic scleroderma. Rheumatol Int 32:2

    Google Scholar 

  • Lian X, Xiao R, Hu X, Kanekura T, Jiang H, Li Y, Wang Y, Yang Y, Zhao M, Lu Q (2012) DNA demethylation of CD40l in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum 64:7

    Article  CAS  Google Scholar 

  • Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Wang Y, Wang Q, Xiao R, Lu Q (2013) Systemic sclerosis: genetics and epigenetics. J Autoimmun 41:161–167

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Wang Y, Shu Y, Lu Q, Xiao R (2015) Epigenetic mechanisms: an emerging role in pathogenesis and its therapeutic potential in systemic sclerosis. Int J Biochem Cell Biol 67:92–100

    Article  CAS  Google Scholar 

  • Makino K, Jinnin M, Kajihara I, Honda N, Sakai K, Masuguchi S, Fukushima S, Inoue Y, Ihn H (2012) Circulating miR-142-3p levels in patients with systemic sclerosis. Clin Exp Dermatol 37:1

    Article  Google Scholar 

  • Makino K, Jinnin M, Aoi J, Hirano A, Kajihara I, Makino T, Sakai K, Fukushima S, Inoue Y, Ihn H (2013a) Discoidin domain receptor 2-microRNA 196a-mediated negative feedback against excess type I collagen expression is impaired in scleroderma dermal fibroblasts. J Investig Dermatology 133:1

    Google Scholar 

  • Makino K, Jinnin M, Hirano A, Yamane K, Eto M, Kusano T, Honda N, Kajihara I, Makino T, Sakai K, Masuguchi S, Fukushima S, Ihn H (2013b) The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol 190:8

    Article  CAS  Google Scholar 

  • Manetti M (2016) Emerging biomarkers in systemic sclerosis. Curr Opin Rheumatol 28:6

    Article  CAS  Google Scholar 

  • Manetti M, Guiducci S, Romano E, Rosa I, Ceccarelli C, Mello T, Milia AF, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M (2013) Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. Arthritis Rheumatol 65:1

    Article  CAS  Google Scholar 

  • Matouk CC, Marsden PA (2008) Epigenetic regulation of vascular endothelial gene expression. Circ Res 102:8

    Article  CAS  Google Scholar 

  • Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, Kowal-Bielecka O, Gay RE, Michel BA, Distler JH, Gay S, Distler O (2010) MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum 62:6

    Article  CAS  Google Scholar 

  • Muangchan C, Baron M, Pope J (2013) The 15% rule in scleroderma: the frequency of severe organ complications in systemic sclerosis. A systematic review. J Rheumatol 40:9

    Google Scholar 

  • Nagaraja V, Denton CP, Khanna D (2015) Old medications and new targeted therapies in systemic sclerosis. Rheumatology (Oxford) 54:11

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, Masuguchi S, Fukushima S, Okamoto Y, Hasegawa M, Fujimoto M, Ihn H (2012) Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol 188:8

    Article  CAS  Google Scholar 

  • Nikpour M, Stevens WM, Herrick AL, Proudman SM (2010) Epidemiology of systemic sclerosis. Best Pract Res Clin Rheumatol 24:6

    Article  Google Scholar 

  • Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, Nakamura K, Yamashita T, Saigusa R, Akamata K, Takahashi T, Ichimura Y, Toyama T, Tsuruta D, Trojanowska M, Nagai R, Sato S (2014) Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nature Commun 5:5797

    Google Scholar 

  • O’Reilly S, Ciechomska M, Fullard N, Przyborski S, van Laar JM (2016) IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci Rep 6:25066

    Google Scholar 

  • Pattanaik D, Brown M, Postlethwaite AE (2011) Vascular involvement in systemic sclerosis (scleroderma). J Inflamm Res 4:105–125

    Google Scholar 

  • Rezaei R, Mahmoudi M, Gharibdoost F, Kavosi H, Dashti N, Imeni V, Jamshidi A, Aslani S, Mostafaei S, Vodjgani M (2017) IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int J Rheum Dis 20:10

    Article  CAS  Google Scholar 

  • Romano E, Chora I, Manetti M, Mazzotta C, Rosa I, Bellando-Randone S, Blagojevic J, Soares R, Avouac J, Allanore Y, Ibba-Manneschi L, Matucci-Cerinic M, Guiducci S (2016) Decreased expression of neuropilin-1 as a novel key factor contributing to peripheral microvasculopathy and defective angiogenesis in systemic sclerosis. Ann Rheumatol Dis 75:8

    Article  CAS  Google Scholar 

  • Romero LI, Zhang DN, Cooke JP, Ho HK, Avalos E, Herrera R, Herron GS (2000) Differential expression of nitric oxide by dermal microvascular endothelial cells from patients with scleroderma. Vasc Med 5:3

    Article  Google Scholar 

  • Saigusa R, Asano Y, Nakamura K, Hirabayashi M, Miura S, Yamashita T, Taniguchi T, Ichimura Y, Takahashi T, Yoshizaki A, Miyagaki T, Sugaya M, Sato S (2017) Systemic sclerosis dermal fibroblasts suppress Th1 cytokine production via galectin-9 overproduction due to fli1 deficiency. J Invest Dermat 137:9

    Article  CAS  Google Scholar 

  • Scussel-Lonzetti L, Joyal F, Raynauld JP, Roussin A, Rich E, Goulet JR, Raymond Y, Senecal JL (2002) Predicting mortality in systemic sclerosis: analysis of a cohort of 309 French Canadian patients with emphasis on features at diagnosis as predictive factors for survival. Medicine (Baltimore) 81:2

    Article  PubMed  Google Scholar 

  • Serrati S, Chilla A, Laurenzana A, Margheri F, Giannoni E, Magnelli L, Chiarugi P, Dotor J, Feijoo E, Bazzichi L, Bombardieri S, Kahaleh B, Fibbi G, Del Rosso M (2013) Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor beta-dependent mesenchymal-to-mesenchymal transition. Arthritis Rheum 65:1

    Article  CAS  Google Scholar 

  • Shi J, Chi S, Xue J, Yang J, Li F, Liu X (2016) Emerging role and therapeutic implication of wnt signaling pathways in autoimmune diseases. J Immunol Res 2016:9392132

    Google Scholar 

  • Steen SO, Iversen LV, Carlsen AL, Burton M, Nielsen CT, Jacobsen S, Heegaard NH (2015) The circulating cell-free microRNA profile in systemic sclerosis is distinct from both healthy controls and systemic lupus erythematosus. J Rheumatol 42:2

    Article  CAS  Google Scholar 

  • Stummvoll GH, Aringer M, Grisar J, Steiner CW, Smolen JS, Knobler R, Graninger WB (2004) Increased transendothelial migration of scleroderma lymphocytes. Ann Rheum Dis 63:5

    Article  Google Scholar 

  • Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, Grieco D, Vinciguerra M, Agnese S, Jungel A, Distler O, Musti AM, Gabrielli A, Avvedimento EV (2014) Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal 7:341

    Article  CAS  Google Scholar 

  • Tanaka S, Suto A, Ikeda K, Sanayama Y, Nakagomi D, Iwamoto T, Suzuki K, Kambe N, Matsue H, Matsumura R, Kashiwakuma D, Iwamoto I, Nakajima H (2013) Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor beta. Rheumatology (Oxford) 52:11

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Asano Y, Nakamura K, Yamashita T, Saigusa R, Ichimura Y, Takahashi T, Toyama T, Yoshizaki A, Sato S (2017) Fli1 deficiency induces CXCL6 expression in dermal fibroblasts and endothelial cells, contributing to the development of fibrosis and vasculopathy in systemic sclerosis. J Rheumatol 44:8

    Article  Google Scholar 

  • Tserel L, Limbach M, Saare M, Kisand K, Metspalu A, Milani L, Peterson P (2014) CpG sites associated with NRP1, NRXN2 and miR-29b-2 are hypomethylated in monocytes during ageing. Immun Ageing 11:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsou PS, Wren JD, Amin MA, Schiopu E, Fox DA, Khanna D, Sawalha AH (2016) Histone deacetylase 5 is overexpressed in scleroderma endothelial cells and impairs angiogenesis via repression of proangiogenic factors. Arthritis Rheumatol 68:12

    Article  CAS  Google Scholar 

  • Tsou PS, Campbell P, Amin MA, Coit P, Miller S, Fox DA, Khanna D, Sawalha AH (2019) Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc Natl Acad Sci USA 116:9

    Article  CAS  Google Scholar 

  • Vadasz Z, Rimar D (2014) New potential biomarkers for disease activity and fibrosis in systemic sclerosis. Israel Med Assoc J 16:10

    Google Scholar 

  • van der Kroef M, Castellucci M, Mokry M, Cossu M, Garonzi M, Bossini-Castillo LM, Chouri E, Wichers CGK, Beretta L, Trombetta E, Silva-Cardoso S, Vazirpanah N, Carvalheiro T, Angiolilli C, Bekker CPJ, Affandi AJ, Reedquist KA, Bonte-Mineur F, Zirkzee EJM, Bazzoni F, Radstake TRDJ, Rossato M (2019) Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting. Ann Rheum Dis 78:4

    Article  Google Scholar 

  • van den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, Matucci-Cerinic M, Naden RP, Medsger Jr TA, Carreira PE, Riemekasten G, Clements PJ, Denton CP, Distler O, Allanore Y, Furst DE, Gabrielli A, Mayes MD, van Laar JM, Seibold JR, Czirjak L, Steen VD, Inanc M, Kowal-Bielecka O, Muller-Ladner U, Valentini G, Veale DJ, Vonk MC, Walker UA, Chung L, Collier DH, Csuka ME, Fessler BJ, Guiducci S, Herrick A, Hsu VM, Jimenez S, Kahaleh B, Merkel PA, Sierakowski S, Silver RM, Simms RW, Varga J, Pope JE (2013) Classification criteria for systemic sclerosis: an American College of Rheumatology/European league against rheumatism collaborative initiative. Arthritis Rheumatol 65:11

    Google Scholar 

  • Wang Y, Kahaleh B (2013) Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 17:10

    Google Scholar 

  • Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheumatol 54:7

    Article  CAS  Google Scholar 

  • Wang Y, Yang Y, Luo Y, Yin Y, Wang Q, Li Y, Kanekura T, Wang J, Liang G, Zhao M, Lu Q, Xiao R (2013a) Aberrant histone modification in peripheral blood B cells from patients with systemic sclerosis. Clin Immunol 149:1

    Article  CAS  Google Scholar 

  • Wang Z, Jinnin M, Kudo H, Inoue K, Nakayama W, Honda N, Makino K, Kajihara I, Fukushima S, Inoue Y, Ihn H (2013b) Detection of hair-microRNAs as the novel potent biomarker: evaluation of the usefulness for the diagnosis of scleroderma. J Dermatol Sci 72:2

    Article  CAS  Google Scholar 

  • Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL (2014a) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1:1

    Article  Google Scholar 

  • Wang Y, Shu Y, Xiao Y, Wang Q, Kanekura T, Li Y, Wang J, Zhao M, Lu Q, Xiao R (2014b) Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin Epigenetics 6:1

    Article  CAS  Google Scholar 

  • Wang YY, Wang Q, Sun XH, Liu RZ, Shu Y, Kanekura T, Huang JH, Li YP, Wang JC, Zhao M, Lu QJ, Xiao R (2014c) DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br J Dermatol 171:1

    CAS  Google Scholar 

  • Wang Q, Xiao Y, Shi Y, Luo Y, Li Y, Zhao M, Lu Q, Xiao R (2015) Overexpression of JMJD3 may contribute to demethylation of H3K27me3 in CD4+ T cells from patients with systemic sclerosis. Clin Immunol 161:2

    Article  CAS  Google Scholar 

  • Whitfield ML, Finlay DR, Murray JI, Troyanskaya OG, Chi JT, Pergamenschikov A, McCalmont TH, Brown PO, Botstein D, Connolly MK (2003) Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc Natl Acad Sci USA 100:21

    Article  CAS  Google Scholar 

  • Wollheim FA (2005) Classification of systemic sclerosis. Visions and reality. Rheumatology (Oxford) 44:10

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Assassi S (2013) The role of type 1 interferon in systemic sclerosis. Front Immunol 4:266

    Google Scholar 

  • Xu D, Hou Y, Zheng Y, Zheng Y, Li M, Zeng X (2016) The 2013 American College of Rheumatology/European league against rheumatism classification criteria for systemic sclerosis could classify systemic sclerosis patients at earlier stage: data from a Chinese EUSTAR Center. PLoS One 11:11

    Google Scholar 

  • Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21:4

    Article  CAS  Google Scholar 

  • Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, Schett G, Distler JH (2016) Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis 75:1

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Zhu H, Luo H, Gao S, Dai X, Li Y, Zuo X (2017) MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed Pharmacother 87:412–418

    Article  CAS  Google Scholar 

  • Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, Zhao H, You Y, Xiao X, Zuo X (2012) MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol 32:3

    Google Scholar 

  • Zhu H, Luo H, Li Y, Zhou Y, Jiang Y, Chai J, Xiao X, You Y, Zuo X (2013) MicroRNA-21 in scleroderma fibrosis and its function in TGF-beta-regulated fibrosis-related genes expression. J Clin Immunol 33:6

    CAS  Google Scholar 

  • Zhu H, Zhu C, Mi W, Chen T, Zhao H, Zuo X, Luo H, Li QZ (2018) Integration of genome-wide DNA methylation and transcription uncovered aberrant methylation-regulated genes and pathways in the peripheral blood mononuclear cells of systemic sclerosis. Int J Rheumatol 2018:7342472

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, Y., Xiao, R. (2020). The Epigenetic Regulation of Scleroderma and Its Clinical Application. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_13

Download citation

Publish with us

Policies and ethics