Skip to main content

Epigenetics in Multiple Sclerosis

  • Chapter
  • First Online:
Epigenetics in Allergy and Autoimmunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

Multiple sclerosis (MS) is an aggravating autoimmune disease that cripples young patients slowly with physical, sensory and cognitive deficits. The break of self-tolerance to neuronal antigens is the key to the pathogenesis of MS, with autoreactive T cells causing demyelination that subsequently leads to inflammation-mediated neurodegenerative events in the central nervous system. The exact etiology of MS remains elusive; however, the interplay of genetic and environmental factors contributes to disease development and progression. Given that genetic variation only accounts for a fraction of risk for MS, extrinsic risk factors including smoking, infection and lack of vitamin D or sunshine, which cause changes in gene expression, contribute to disease development through epigenetic regulation. To date, there is a growing body of scientific evidence to support the important roles of epigenetic processes in MS. In this chapter, the three main layers of epigenetic regulatory mechanisms, namely DNA methylation, histone modification and microRNA-mediated gene regulation, will be discussed, with a particular focus on the role of epigenetics on dysregulated immune responses and neurodegenerative events in MS. Also, the potential for epigenetic modifiers as biomarkers and therapeutics for MS will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlbrecht J, Martino F, Pul R, Skripuletz T, Suhs KW, Schauerte C et al (2016) Deregulation of microRNA-181c in cerebrospinal fluid of patients with clinically isolated syndrome is associated with early conversion to relapsing-remitting multiple sclerosis. Mult Scler 22:1202–1214

    Article  CAS  PubMed  Google Scholar 

  • Ahmadian-Elmi M, Bidmeshki Pour A, Naghavian R, Ghaedi K, Tanhaei S, Izadi T et al (2016) miR-27a and miR-214 exert opposite regulatory roles in Th17 differentiation via mediating different signaling pathways in peripheral blood CD4+ T lymphocytes of patients with relapsing-remitting multiple sclerosis. Immunogenetics 68:43–54

    Article  CAS  PubMed  Google Scholar 

  • Akassoglou K, Bauer J, Kassiotis G, Pasparakis M, Lassmann H, Kollias G et al (1998) Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153:801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akimova T, Beier UH, Liu Y, Wang L, Hancock WW (2012) Histone/protein deacetylases and T-cell immune responses. Blood 119:2443–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcina A, Abad-Grau Mdel M, Fedetz M, Izquierdo G, Lucas M, Fernandez O et al (2012) Multiple sclerosis risk variant HLA-DRB1*1501 associates with high expression of DRB1 gene in different human populations. PLoS One 7:e29819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda LC, Lorenzi JC, Sousa AP, Zanette DL, Palma PV, Panepucci RA et al (2015) Autologous hematopoietic SCT normalizes miR-16, -155 and -142-3p expression in multiple sclerosis patients. Bone Marrow Transplant 50:380–389

    Article  CAS  PubMed  Google Scholar 

  • Aung LL, Balashov KE (2015) Decreased dicer expression is linked to increased expression of co-stimulatory molecule CD80 on B cells in multiple sclerosis. Mult Scler 21:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Aung LL, Mouradian MM, Dhib-Jalbut S, Balashov KE (2015) MMP-9 expression is increased in B lymphocytes during multiple sclerosis exacerbation and is regulated by microRNA-320a. J Neuroimmunol 278:185–189

    Article  CAS  PubMed  Google Scholar 

  • Ayuso T, Aznar P, Soriano L, Olaskoaga A, Roldan M, Otano M et al (2017) Vitamin D receptor gene is epigenetically altered and transcriptionally up-regulated in multiple sclerosis. PLoS One 12:e0174726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baer A, Colon-Moran W, Bhattarai N (2018) Characterization of the effects of immunomodulatory drug fingolimod (FTY720) on human T cell receptor signaling pathways. Sci Rep 8:10910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck H, Schwarz G, Schroter CJ, Deeg M, Baier D, Stevanovic S et al (2001) Cathepsin S and an asparagine-specific endoprotease dominate the proteolytic processing of human myelin basic protein in vitro. Eur J Immunol 31:3726–3736

    Article  CAS  PubMed  Google Scholar 

  • Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35:180–188

    Article  CAS  PubMed  Google Scholar 

  • Belver L, de Yebenes VG, Ramiro AR (2010) MicroRNAs prevent the generation of autoreactive antibodies. Immunity 33:713–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman P, Piket E, Khademi M, James T, Brundin L, Olsson T et al (2016) Circulating miR-150 in CSF is a novel candidate biomarker for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M et al (2011) miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 208:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos SD, Page CM, Andreassen BK, Elboudwarej E, Gustavsen MW, Briggs F et al (2015) Genome-wide DNA methylation profiles indicate CD8+ T cell hypermethylation in multiple sclerosis. PLoS ONE 10:e0117403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradford CM, Ramos I, Cross AK, Haddock G, McQuaid S, Nicholas AP et al (2014) Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis. J Neuroimmunol 273:85–95

    Article  CAS  PubMed  Google Scholar 

  • Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV et al (2014) Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 83:1022–1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Calabrese R, Zampieri M, Mechelli R, Annibali V, Guastafierro T, Ciccarone F et al (2012) Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler 18:299–304

    Article  CAS  PubMed  Google Scholar 

  • Camelo S, Iglesias AH, Hwang D, Due B, Ryu H, Smith K et al (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 164:10–21

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco G, Stridh P, Guerreiro-Cacais AO, Adzemovic MZ, Falcao AM, Marta M et al (2014) Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats. Neurobiol Dis 71:220–233

    Article  CAS  PubMed  Google Scholar 

  • Catanzaro G, Pucci M, Viscomi MT, Lanuti M, Feole M, Angeletti S et al (2016) Epigenetic modifications of Dexras 1 along the nNOS pathway in an animal model of multiple sclerosis. J Neuroimmunol 294:32–40

    Article  CAS  PubMed  Google Scholar 

  • Cerutti C, Soblechero-Martin P, Wu D, Lopez-Ramirez MA, de Vries H, Sharrack B et al (2016) MicroRNA-155 contributes to shear-resistant leukocyte adhesion to human brain endothelium in vitro. Fluids Barriers CNS 13:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan MW, Chang CB, Tung CH, Sun J, Suen JL, Wu SF (2014) Low-dose 5-aza-2′-deoxycytidine pretreatment inhibits experimental autoimmune encephalomyelitis by induction of regulatory T cells. Mol Med 20:248–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Gao DY, Huang L (2015) In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 81:128–141

    Article  CAS  PubMed  Google Scholar 

  • Chomyk AM, Volsko C, Tripathi A, Deckard SA, Trapp BD, Fox RJ et al (2017) DNA methylation in demyelinated multiple sclerosis hippocampus. Sci Rep 7:8696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chong MM, Rasmussen JP, Rudensky AY, Littman DR (2008) The RNAseIII enzyme Drosha is critical in T cells for preventing lethal inflammatory disease. J Exp Med 205:2005–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A et al (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T et al (2006) A role for dicer in immune regulation. J Exp Med 203:2519–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox MB, Cairns MJ, Gandhi KS, Carroll AP, Moscovis S, Stewart GJ et al (2010) MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 5:e12132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M et al (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

    Article  CAS  PubMed  Google Scholar 

  • De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F et al (2001) Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain: J Neurol 124:1635–1645

    Article  Google Scholar 

  • de Kouchkovsky D, Esensten JH, Rosenthal WL, Morar MM, Bluestone JA, Jeker LT (2013) microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. J Immunol 191:1594–1605

    Article  PubMed  CAS  Google Scholar 

  • De Santis G, Ferracin M, Biondani A, Caniatti L, Rosaria Tola M, Castellazzi M et al (2010) Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226:165–171

    Article  PubMed  CAS  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558

    Article  CAS  PubMed  Google Scholar 

  • Didonna A, Opal P (2015) The promise and perils of HDAC inhibitors in neurodegeneration. Ann Clin Transl Neurol 2:79–101

    Article  CAS  PubMed  Google Scholar 

  • Dolati S, Aghebati-Maleki L, Ahmadi M, Marofi F, Babaloo Z, Ayramloo H et al (2018) Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol 233:5222–5230

    Article  CAS  PubMed  Google Scholar 

  • Donas C, Carrasco M, Fritz M, Prado C, Tejon G, Osorio-Barrios F et al (2016) The histone demethylase inhibitor GSK-J4 limits inflammation through the induction of a tolerogenic phenotype on DCs. J Autoimmun 75:105–117

    Article  CAS  PubMed  Google Scholar 

  • Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Dunaeva M, Derksen M, Pruijn GJM (2018) LINE-1 hypermethylation in serum cell-free DNA of relapsing remitting multiple sclerosis patients. mol Neurobiol 55:4681–4688

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, Chomyk AM, Chang A, Ribaudo MV, Deckard SA, Doud MK et al (2013) Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol 73:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebers GC, Bulman DE, Sadovnick AD, Paty DW, Warren S, Hader W et al (1986) A population-based study of multiple sclerosis in twins. N Engl J Med 315:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Ehtesham N, Khorvash F, Kheirollahi M (2017) miR-145 and miR20a-5p potentially mediate pleiotropic effects of interferon-beta through mitogen-activated protein kinase signaling pathway in multiple sclerosis patients. J Mol Neurosci 61:16–24

    Article  CAS  PubMed  Google Scholar 

  • Fatemi M, Hermann A, Gowher H, Jeltsch A (2002) Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem 269:4981–4984

    Article  CAS  PubMed  Google Scholar 

  • Federation MSI (2013) Atlas of MS 2013: mapping multiple sclerosis around the world

    Google Scholar 

  • Feinberg AP (2018) The key role of epigenetics in human disease prevention and mitigation. N Engl J Med 378:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Fenoglio C, Cantoni C, De Riz M, Ridolfi E, Cortini F, Serpente M et al (2011) Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neurosci Lett 504:9–12

    Article  CAS  PubMed  Google Scholar 

  • Fenoglio C, Ridolfi E, Cantoni C, De Riz M, Bonsi R, Serpente M et al (2013) Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Mult Scler 19:1938–1942

    Article  CAS  PubMed  Google Scholar 

  • Field J, Fox A, Jordan MA, Baxter AG, Spelman T, Gresle M et al (2017) Interleukin-2 receptor-alpha proximal promoter hypomethylation is associated with multiple sclerosis. Genes Immun 18:59–66

    Article  CAS  PubMed  Google Scholar 

  • Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O (2000) Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55:140–148

    Article  CAS  PubMed  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain: J Neurol 132:1175–1189

    Article  Google Scholar 

  • Gandhi R, Healy B, Gholipour T, Egorova S, Musallam A, Hussain MS et al (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73:729–740

    Article  CAS  PubMed  Google Scholar 

  • Ge Z, Da Y, Xue Z, Zhang K, Zhuang H, Peng M et al (2013) Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis. Exp Neurol 241:56–66

    Article  CAS  PubMed  Google Scholar 

  • Ghadiri N, Emamnia N, Ganjalikhani-Hakemi M, Ghaedi K, Etemadifar M, Salehi M et al (2018) Analysis of the expression of mir-34a, mir-199a, mir-30c and mir-19a in peripheral blood CD4+ T lymphocytes of relapsing-remitting multiple sclerosis patients. Gene 659:109–117

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni G, Butzkueven H, Dhib-Jalbut S, Hobart J, Kobelt G, Pepper G et al (2016) Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord 9(Suppl 1):S5–S48

    Article  PubMed  Google Scholar 

  • Goldenberg MM (2012) Multiple sclerosis review. PT 37:175–184

    Google Scholar 

  • Goschl L, Preglej T, Hamminger P, Bonelli M, Andersen L, Boucheron N et al (2018) A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis. J Autoimmun 86:51–61

    Article  PubMed  CAS  Google Scholar 

  • Graves MC, Benton M, Lea RA, Boyle M, Tajouri L, Macartney-Coxson D et al (2014) Methylation differences at the HLA-DRB1 locus in CD4+ T-Cells are associated with multiple sclerosis. Mult Scler 20:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H, Nagarkatti PS, Nagarkatti M (2011) CD44 Reciprocally regulates the differentiation of encephalitogenic Th1/Th17 and Th2/regulatory T cells through epigenetic modulation involving DNA methylation of cytokine gene promoters, thereby controlling the development of experimental autoimmune encephalomyelitis. J Immunol 186:6955–6964

    Article  CAS  PubMed  Google Scholar 

  • Guan H, Fan D, Mrelashvili D, Hao H, Singh NP, Singh UP et al (2013) MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol 43:104–114

    Article  CAS  PubMed  Google Scholar 

  • Guerau-de-Arellano M, Smith KM, Godlewski J, Liu Y, Winger R, Lawler SE et al (2011) Micro-RNA dysregulation in multiple sclerosis favours pro-inflammatory T-cell-mediated autoimmunity. Brain: J Neurol 134:3578–3589

    Article  Google Scholar 

  • Guerau-de-Arellano M, Liu Y, Meisen WH, Pitt D, Racke MK, Lovett-Racke AE (2015) Analysis of miRNA in normal appearing white matter to identify altered CNS pathways in multiple sclerosis. Journal of autoimmune disorders 1(1):6

    Google Scholar 

  • Gyorgy B, Toth E, Tarcsa E, Falus A, Buzas EI (2006) Citrullination: a posttranslational modification in health and disease. Int J Biochem Cell Biol 38:1662–1677

    Article  PubMed  CAS  Google Scholar 

  • Haghikia A, Haghikia A, Hellwig K, Baraniskin A, Holzmann A, Decard BF et al (2012) Regulated microRNAs in the CSF of patients with multiple sclerosis: a case-control study. Neurology 79:2166–2170

    Article  CAS  PubMed  Google Scholar 

  • Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G et al (2011) Oxidative damage in multiple sclerosis lesions. Brain: J Neurol 134:1914–1924

    Article  Google Scholar 

  • Hait NC, Wise LE, Allegood JC, O’Brien M, Avni D, Reeves TM et al (2014) Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci 17:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handel AE, De Luca GC, Morahan J, Handunnetthi L, Sadovnick AD, Ebers GC et al (2010a) No evidence for an effect of DNA methylation on multiple sclerosis severity at HLA-DRB1*15 or HLA-DRB5. J Neuroimmunol 223:120–123

    Article  CAS  PubMed  Google Scholar 

  • Handel AE, Ebers GC, Ramagopalan SV (2010b) Epigenetics: molecular mechanisms and implications for disease. Trends Mol Med 16:7–16

    Article  CAS  PubMed  Google Scholar 

  • Hatton RD (2011) TGF-β in Th17 cell development: the truth is out there. Immunity 34:288–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S (2014) Use of epigenetic drugs in disease: an overview. Genet Epigenetics 6:9–19

    CAS  Google Scholar 

  • Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14:406–419

    Article  CAS  PubMed  Google Scholar 

  • Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359

    Article  CAS  PubMed  Google Scholar 

  • Hewes D, Tatomir A, Kruszewski AM, Rao G, Tegla CA, Ciriello J et al (2017) SIRT1 as a potential biomarker of response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol 102:191–197

    Article  CAS  PubMed  Google Scholar 

  • Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiremath MM, Chen VS, Suzuki K, Ting JP, Matsushima GK (2008) MHC class II exacerbates demyelination in vivo independently of T cells. J Neuroimmunol 203:23–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hjelmstrom P, Juedes AE, Fjell J, Ruddle NH (1998) B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol 161:4480–4483

    CAS  PubMed  Google Scholar 

  • Honardoost MA, Kiani-Esfahani A, Ghaedi K, Etemadifar M, Salehi M (2014) miR-326 and miR-26a, two potential markers for diagnosis of relapse and remission phases in patient with relapsing-remitting multiple sclerosis. Gene 544:128–133

    Article  CAS  PubMed  Google Scholar 

  • Hu R, Huffaker TB, Kagele DA, Runtsch MC, Bake E, Chaudhuri AA et al (2013) MicroRNA-155 confers encephalogenic potential to Th17 cells by promoting effector gene expression. J Immunol 190:5972–5980

    Article  CAS  PubMed  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  CAS  PubMed  Google Scholar 

  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 194:669–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huseby ES, Huseby PG, Shah S, Smith R, Stadinski BD (2012) Pathogenic CD8 T cells in multiple sclerosis and its experimental models. Front Immunol 3:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Huynh JL, Garg P, Thin TH, Yoo S, Dutta R, Trapp BD et al (2014) Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat Neurosci 17:121–130

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama K, Gonzalez-Martin A, Kim BS, Jin HY, Jin W, Xu W et al (2016) The MicroRNA-183-96-182 cluster promotes T helper 17 cell pathogenicity by negatively regulating transcription factor Foxo1 expression. Immunity 44:1284–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingwersen J, Menge T, Wingerath B, Kaya D, Graf J, Prozorovski T et al (2015) Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b. Ann Clin Transl Neurol 2:43–55

    Article  CAS  PubMed  Google Scholar 

  • Inkster B, Strijbis EM, Vounou M, Kappos L, Radue EW, Matthews PM et al (2013) Histone deacetylase gene variants predict brain volume changes in multiple sclerosis. Neurobiol Aging 34:238–247

    Article  CAS  PubMed  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A et al (2013) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45:1353–1360

    Google Scholar 

  • International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  • Jafari N, Shaghaghi H, Mahmoodi D, Shirzad Z, Alibeiki F, Bohlooli S et al (2015) Overexpression of microRNA biogenesis machinery: Drosha, DGCR8 and Dicer in multiple sclerosis patients. J Clin Neurosci: Off J Neurosurg Soc Australas 22:200–203

    Article  CAS  Google Scholar 

  • Janson PC, Linton LB, Bergman EA, Marits P, Eberhardson M, Piehl F et al (2011) Profiling of CD4+ T cells with epigenetic immune lineage analysis. J Immunol 186:92–102

    Article  CAS  PubMed  Google Scholar 

  • Jernas M, Malmestrom C, Axelsson M, Nookaew I, Wadenvik H, Lycke J et al (2013) MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS). BMC Immunol 14:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jevtic B, Timotijevic G, Stanisavljevic S, Momcilovic M, Mostarica Stojkovic M, Miljkovic D (2015) Micro RNA-155 participates in re-activation of encephalitogenic T cells. Biomed Pharmacother 74:206–210

    Article  CAS  PubMed  Google Scholar 

  • Jin B, Li Y, Robertson KD (2011) DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2:607–617

    Article  CAS  Google Scholar 

  • Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain: J Neurol 132:3342–3352

    Article  Google Scholar 

  • Juzwik CA, Drake S, Lecuyer MA, Johnson RM, Morquette B, Zhang Y et al (2018) Neuronal microRNA regulation in experimental autoimmune encephalomyelitis. Sci Rep 8:13437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaunzner UW, Gauthier SA (2017) MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther Adv Neurol Disord 10:247–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Keller A, Leidinger P, Lange J, Borries A, Schroers H, Scheffler M et al (2009) Multiple sclerosis: microRNA expression profiles accurately differentiate patients with relapsing-remitting disease from healthy controls. PLoS One 4:e7440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A, Hemmrich-Stanisak G et al (2014) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 20:295–303

    Article  CAS  PubMed  Google Scholar 

  • Kimura K, Hohjoh H, Fukuoka M, Sato W, Oki S, Tomi C et al (2018) Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun 9:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13:297–311

    Article  CAS  PubMed  Google Scholar 

  • Kulakova OG, Kabilov MR, Danilova LV, Popova EV, Baturina OA, Tsareva EY et al (2016) Whole-genome DNA methylation analysis of peripheral blood mononuclear cells in multiple sclerosis patients with different disease courses. Acta Naturae 8:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kular L, Liu Y, Ruhrmann S, Zheleznyakova G, Marabita F, Gomez-Cabrero D et al (2018) DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat Commun 9:2397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumagai C, Kalman B, Middleton FA, Vyshkina T, Massa PT (2012) Increased promoter methylation of the immune regulatory gene SHP-1 in leukocytes of multiple sclerosis subjects. J Neuroimmunol 246:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo G, Wu CY, Yang HY (2018) MiR-17-92 cluster and immunity. Journal of the Formosan Medical Association = Taiwan yi zhi 118(1 Pt 1):2–6

    Article  PubMed  CAS  Google Scholar 

  • Kurebayashi Y, Nagai S, Ikejiri A, Ohtani M, Ichiyama K, Baba Y et al (2012) PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORgamma. Cell Rep 1:360–373

    Article  CAS  PubMed  Google Scholar 

  • Lam IKY, Chow JX, Lau CS, Chan VSF (2018) MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett 431:201–212

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legroux L, Arbour N (2015) Multiple sclerosis and T lymphocytes: an entangled story. J Neuroimmune Pharmacol 10:528–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A et al (2016) Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci USA 113:E1826–E1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010) Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 67:824–830

    PubMed  PubMed Central  Google Scholar 

  • Lewkowicz P, Cwiklinska H, Mycko MP, Cichalewska M, Domowicz M, Lewkowicz N et al (2015) Dysregulated RNA-induced silencing complex (RISC) assembly within CNS corresponds with abnormal miRNA expression during autoimmune demyelination. J Neurosci 35:7521–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Du C, Wang W, Ma G, Cui L, Zhou H et al (2015) Genetic association of MiR-146a with multiple sclerosis susceptibility in the Chinese population. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol 35:281–291

    Article  CAS  Google Scholar 

  • Li B, Wang X, Choi IY, Wang YC, Liu S, Pham AT et al (2017) miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest 127:3702–3716

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y et al (2017) In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell 171(1495–1507):e1415

    Google Scholar 

  • Liggett T, Melnikov A, Tilwalli S, Yi Q, Chen H, Replogle C et al (2010) Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis. J Neurol Sci 290:16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HW, Kang SG, Ryu JK, Schilling B, Fei M, Lee IS et al (2015) SIRT1 deacetylates RORgammat and enhances Th17 cell generation. J Exp Med 212:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg RL, Hoffmann F, Mehling M, Kuhle J, Kappos L (2010) Altered expression of miR-17-5p in CD4+ lymphocytes of relapsing-remitting multiple sclerosis patients. Eur J Immunol 40:888–898

    Article  CAS  PubMed  Google Scholar 

  • Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SQ, Jiang S, Li C, Zhang B, Li QJ (2014) miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J Biol Chem 289:12446–12456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Gao Q, Zhang Y, Li Z, Mei X (2017a) MicroRNA-590 promotes pathogenic Th17 cell differentiation through targeting Tob1 and is associated with multiple sclerosis. Biochem Biophys Res Commun 493:901–908

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Ma X, Chen L, Yang Y, Zeng Y, Gao J et al (2017b) MicroRNA-15b suppresses Th17 differentiation and is associated with pathogenesis of multiple sclerosis by targeting O-GlcNAc transferase. J Immunol 198:2626–2639

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J et al (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28:2551–2565

    Article  CAS  PubMed  Google Scholar 

  • Lorenzi JC, Brum DG, Zanette DL, de Paula Alves Souza A, Barbuzano FG, Dos Santos AC et al (2012) miR-15a and 16-1 are downregulated in CD4+ T cells of multiple sclerosis relapsing patients. Int J Neurosci 122:466–471

    Article  CAS  PubMed  Google Scholar 

  • Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K et al (2009) Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 30:80–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas RM, Byrne SN, Correale J, Ilschner S, Hart PH (2015) Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener Dis Manag 5:413–424

    Article  PubMed  Google Scholar 

  • Mahmoud FM, ElSheshtawy NM, Zaki WK, Zamzam DM, Fahim NM (2017) MicroRNA 26a expression in peripheral blood mononuclear cells and correlation with serum interleukin-17 in relapsing-remitting multiple sclerosis patients. Egypt J Immunol 24:71–82

    PubMed  Google Scholar 

  • Majd M, Hosseini A, Ghaedi K, Kiani-Esfahani A, Tanhaei S, Shiralian-Esfahani H et al (2018) MiR-9-5p and miR-106a-5p dysregulated in CD4(+) T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation. Iran J Basic Med Sci 21:277–283

    PubMed  PubMed Central  Google Scholar 

  • Maltby VE, Graves MC, Lea RA, Benton MC, Sanders KA, Tajouri L et al (2015) Genome-wide DNA methylation profiling of CD8+ T cells shows a distinct epigenetic signature to CD4+ T cells in multiple sclerosis patients. Clin Epigenetics 7:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maltby VE, Lea RA, Sanders KA, White N, Benton MC, Scott RJ et al (2017) Differential methylation at MHC in CD4(+) T cells is associated with multiple sclerosis independently of HLA-DRB1. Clin Epigenetics 9:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mameli G, Arru G, Caggiu E, Niegowska M, Leoni S, Madeddu G et al (2016) Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS One 11:e0157153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mancuso R, Hernis A, Agostini S, Rovaris M, Caputo D, Clerici M (2015) MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J Transl Med 13:148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mangano K, Fagone P, Bendtzen K, Meroni PL, Quattrocchi C, Mammana S et al (2014) Hypomethylating agent 5-aza-2′-deoxycytidine (DAC) ameliorates multiple sclerosis in mouse models. J Cell Physiol 229:1918–1925

    Article  CAS  PubMed  Google Scholar 

  • Manna I, Iaccino E, Dattilo V, Barone S, Vecchio E, Mimmi S et al (2018) Exosome-associated miRNA profile as a prognostic tool for therapy response monitoring in multiple sclerosis patients. FASEB J 32(8):4241–4246. https://doi.org/10.1096/fj.201701533R

    Article  CAS  PubMed  Google Scholar 

  • Marabita F, Almgren M, Sjoholm LK, Kular L, Liu Y, James T et al (2017) Smoking induces DNA methylation changes in multiple sclerosis patients with exposure-response relationship. Sci Rep 7:14589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martey CA, Baglole CJ, Gasiewicz TA, Sime PJ, Phipps RP (2005) The aryl hydrocarbon receptor is a regulator of cigarette smoke induction of the cyclooxygenase and prostaglandin pathways in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 289:L391–L399

    Article  CAS  PubMed  Google Scholar 

  • Martin A, Tegla CA, Cudrici CD, Kruszewski AM, Azimzadeh P, Boodhoo D et al (2015) Role of SIRT1 in autoimmune demyelination and neurodegeneration. Immunol Res 61:187–197

    Article  CAS  PubMed  Google Scholar 

  • Martin NA, Molnar V, Szilagyi GT, Elkjaer ML, Nawrocki A, Okarmus J et al (2018) Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice. Front Immunol 9:490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinelli-Boneschi F, Fenoglio C, Brambilla P, Sorosina M, Giacalone G, Esposito F et al (2012) MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neurosci Lett 508:4–8

    Article  CAS  PubMed  Google Scholar 

  • Mastronardi FG, Noor A, Wood DD, Paton T, Moscarello MA (2007) Peptidyl argininedeiminase 2 CpG island in multiple sclerosis white matter is hypomethylated. J Neurosci Res 85:2006–2016

    Article  CAS  PubMed  Google Scholar 

  • Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM et al (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 26:11387–11396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta A, Baltimore D (2016) MicroRNAs as regulatory elements in immune system logic. Nat Rev Immunol 16:279–294

    Article  CAS  PubMed  Google Scholar 

  • Meira M, Sievers C, Hoffmann F, Derfuss T, Kuhle J, Kappos L et al (2014a) MiR-126: a novel route for natalizumab action? Mult Scler 20:1363–1370

    Article  CAS  PubMed  Google Scholar 

  • Meira M, Sievers C, Hoffmann F, Rasenack M, Kuhle J, Derfuss T et al (2014b) Unraveling natalizumab effects on deregulated miR-17 expression in CD4+ T cells of patients with relapsing-remitting multiple sclerosis. J Immunol Res 2014:897249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki Y, Li R, Rezk A, Misirliyan H, Moore C, Farooqi N et al (2014) A novel microRNA-132-sirtuin-1 axis underlies aberrant B-cell cytokine regulation in patients with relapsing-remitting multiple sclerosis [corrected]. PLoS One 9:e105421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moisan J, Grenningloh R, Bettelli E, Oukka M, Ho IC (2007) Ets-1 is a negative regulator of Th17 differentiation. J Exp Med 204:2825–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnarfi N, Schulze-Topphoff U, Weber MS, Patarroyo JC, Prod’homme T, Varrin-Doyer M et al (2013) MHC class II-dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies. J Exp Med 210:2921–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore CS, Rao VT, Durafourt BA, Bedell BJ, Ludwin SK, Bar-Or A et al (2013) miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann Neurol 74:709–720

    Article  CAS  PubMed  Google Scholar 

  • Moore JR, Hubler SL, Nelson CD, Nashold FE, Spanier JA, Hayes CE (2018) 1,25-Dihydroxyvitamin D3 increases the methionine cycle, CD4(+) T cell DNA methylation and Helios(+)Foxp3(+) T regulatory cells to reverse autoimmune neurodegenerative disease. J Neuroimmunol 324:100–114

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Culla M, Irizar H, Castillo-Trivino T, Saenz-Cuesta M, Sepulveda L, Lopetegi I et al (2014) Blood miRNA expression pattern is a possible risk marker for natalizumab-associated progressive multifocal leukoencephalopathy in multiple sclerosis patients. Mult Scler 20:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187:2213–2221

    Article  CAS  PubMed  Google Scholar 

  • Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R et al (2008) Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 1:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mycko MP, Cichalewska M, Cwiklinska H, Selmaj KW (2015) miR-155-3p drives the development of autoimmune demyelination by regulation of heat shock protein 40. J Neurosci 35:16504–16515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naghavian R, Ghaedi K, Kiani-Esfahani A, Ganjalikhani-Hakemi M, Etemadifar M, Nasr-Esfahani MH (2015) miR-141 and miR-200a, revelation of new possible players in modulation of Th17/Treg differentiation and pathogenesis of multiple sclerosis. PLoS One 10:e0124555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakahama T, Hanieh H, Nguyen NT, Chinen I, Ripley B, Millrine D et al (2013) Aryl hydrocarbon receptor-mediated induction of the microRNA-132/212 cluster promotes interleukin-17-producing T-helper cell differentiation. Proc Natl Acad Sci USA 110:11964–11969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neven KY, Piola M, Angelici L, Cortini F, Fenoglio C, Galimberti D et al (2016) Repetitive element hypermethylation in multiple sclerosis patients. BMC Genet 17:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmagadda VK, Bever CT, Vattikunta NR, Talat S, Ahmad V, Nagalla NK et al (2013) Overexpression of SIRT1 protein in neurons protects against experimental autoimmune encephalomyelitis through activation of multiple SIRT1 targets. J Immunol 190:4595–4607

    Article  CAS  PubMed  Google Scholar 

  • Niwald M, Migdalska-Sek M, Brzezianska-Lasota E, Miller E (2017) Evaluation of selected MicroRNAs expression in remission phase of multiple sclerosis and their potential link to cognition, depression, and disability. J Mol Neurosci 63:275–282

    Article  CAS  PubMed  Google Scholar 

  • Noorbakhsh F, Ellestad KK, Maingat F, Warren KG, Han MH, Steinman L et al (2011) Impaired neurosteroid synthesis in multiple sclerosis. Brain: J Neurol 134:2703–2721

    Article  Google Scholar 

  • Noori-Zadeh A, Mesbah-Namin SA, Saboor-Yaraghi AA (2017) Epigenetic and gene expression alterations of FOXP3 in the T cells of EAE mouse model of multiple sclerosis. J Neurol Sci 375:203–208

    Article  CAS  PubMed  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Olsen JA, Kenna LA, Tipon RC, Spelios MG, Stecker MM, Akirav EM (2016) A minimally-invasive blood-derived biomarker of oligodendrocyte cell-loss in multiple sclerosis. EBioMedicine 10:227–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Orton SM, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD et al (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 5:932–936

    Article  PubMed  Google Scholar 

  • Otaegui D, Baranzini SE, Armananzas R, Calvo B, Munoz-Culla M, Khankhanian P et al (2009) Differential micro RNA expression in PBMC from multiple sclerosis patients. PLoS One 4:e6309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF et al (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325:1142–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paraboschi EM, Solda G, Gemmati D, Orioli E, Zeri G, Benedetti MD et al (2011) Genetic association and altered gene expression of mir-155 in multiple sclerosis patients. Int J Mol Sci 12:8695–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park R, Lee WJ, Ji JD (2016) Association between the three functional miR-146a single-nucleotide polymorphisms, rs2910164, rs57095329, and rs2431697, and autoimmune disease susceptibility: a meta-analysis. Autoimmunity 49:451–458

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Jin HS, Lopez J, Elly C, Kim G, Murai M et al (2013) TSC1 regulates the balance between effector and regulatory T cells. J Clin Invest 123:5165–5178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedre X, Mastronardi F, Bruck W, Lopez-Rodas G, Kuhlmann T, Casaccia P (2011) Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. J Neurosci 31:3435–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Medel MJ, Oliver-Martos B, Urbaneja-Romero P, Hurtado-Guerrero I, Ortega-Pinazo J, Serrano-Castro P et al (2017) Global methylation correlates with clinical status in multiple sclerosis patients in the first year of IFNbeta treatment. Sci Rep 7:8727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Popescu BF, Lucchinetti CF (2012) Pathology of demyelinating diseases. Annu Rev Pathol 7:185–217

    Article  CAS  PubMed  Google Scholar 

  • Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu X, Zhou J, Wang T, Han J, Ma L, Yu H et al (2016) MiR-30a inhibits Th17 differentiation and demyelination of EAE mice by targeting the IL-21R. Brain Behav Immun 57:193–199

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E et al (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  CAS  PubMed  Google Scholar 

  • Quintana E, Ortega FJ, Robles-Cedeno R, Villar ML, Buxo M, Mercader JM et al (2017) miRNAs in cerebrospinal fluid identify patients with MS and specifically those with lipid-specific oligoclonal IgM bands. Mult Scler 23:1716–1726

    Article  CAS  PubMed  Google Scholar 

  • Ramagopalan SV, Dyment DA, Morrison KM, Herrera BM, Deluca GC, Lincoln MR et al (2008) Methylation of class II transactivator gene promoter IV is not associated with susceptibility to multiple sclerosis. BMC Med Genet 9:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15:1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raynal NJ, Da Costa EM, Lee JT, Gharibyan V, Ahmed S, Zhang H et al (2017) Repositioning FDA-approved drugs in combination with epigenetic drugs to reprogram colon cancer epigenome. Mol Cancer Ther 16:397–407

    Article  CAS  PubMed  Google Scholar 

  • Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddycherla AV, Meinert I, Reinhold A, Reinhold D, Schraven B, Simeoni L (2015) miR-20a inhibits TCR-mediated signaling and cytokine production in human naive CD4+ T cells. PLoS One 10:e0125311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Regev K, Paul A, Healy B, von Glenn F, Diaz-Cruz C, Gholipour T et al (2016) Comprehensive evaluation of serum microRNAs as biomarkers in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 3:e267

    Article  PubMed  PubMed Central  Google Scholar 

  • Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JA, Kamphuis WW, Kooij G et al (2013) MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 33:6857–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaei N, Talebi F, Ghorbani S, Rezaei A, Esmaeili A, Noorbakhsh F et al (2018) MicroRNA-92a drives Th1 responses in the experimental autoimmune encephalomyelitis. Inflammation 42(1):235–245

    Article  CAS  Google Scholar 

  • Ridolfi E, Fenoglio C, Cantoni C, Calvi A, De Riz M, Pietroboni A et al (2013) Expression and genetic analysis of MicroRNAs involved in multiple sclerosis. Int J Mol Sci 14:4375–4384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieder SA, Metidji A, Glass DD, Thornton AM, Ikeda T, Morgan BA et al (2015) Eos is redundant for regulatory T cell function but plays an important role in IL-2 and Th17 production by CD4+ conventional T cells. J Immunol 195:553–563

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhrmann S, Ewing E, Piket E, Kular L, Cetrulo Lorenzi JC, Fernandes SJ et al (2017) Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes. Mult Scler 24(10):1288–1300. https://doi.org/10.1177/1352458517721356

    Article  PubMed  CAS  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  • Sanders KA, Benton MC, Lea RA, Maltby VE, Agland S, Griffin N et al (2016) Next-generation sequencing reveals broad down-regulation of microRNAs in secondary progressive multiple sclerosis CD4+ T cells. Clin Epigenetics 8:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satoorian T, Li B, Tang X, Xiao J, Xing W, Shi W et al (2016) MicroRNA223 promotes pathogenic T-cell development and autoimmune inflammation in central nervous system in mice. Immunology 148:326–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Williamson D, Ashley-Koch A (2007) HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 165:1097–1109

    Article  PubMed  Google Scholar 

  • Selmaj I, Cichalewska M, Namiecinska M, Galazka G, Horzelski W, Selmaj KW et al (2017) Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann Neurol 81:703–717

    Article  CAS  PubMed  Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164–174

    Article  PubMed  Google Scholar 

  • Severin ME, Lee PW, Liu Y, Selhorst AJ, Gormley MG, Pei W et al (2016) MicroRNAs targeting TGFbeta signalling underlie the regulatory T cell defect in multiple sclerosis. Brain: J Neurol 139:1747–1761

    Article  Google Scholar 

  • Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Azebi S, England P, Christensen T, Moller-Larsen A, Petersen T et al (2012) Citrullination of histone H3 interferes with HP1-mediated transcriptional repression. PLoS Genet 8:e1002934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Sandoval J, Swiss VA, Li J, Dupree J, Franklin RJ et al (2008) Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 11:1024–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindler KS, Ventura E, Dutt M, Elliott P, Fitzgerald DC, Rostami A (2010) Oral resveratrol reduces neuronal damage in a model of multiple sclerosis. J Neuroophthalmol 30:328–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L (2012) Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 39:6219–6225

    Article  CAS  PubMed  Google Scholar 

  • Sievers C, Meira M, Hoffmann F, Fontoura P, Kappos L, Lindberg RL (2012) Altered microRNA expression in B lymphocytes in multiple sclerosis: towards a better understanding of treatment effects. Clin Immunol 144:70–79

    Article  CAS  PubMed  Google Scholar 

  • Singhal NK, Li S, Arning E, Alkhayer K, Clements R, Sarcyk Z et al (2015) Changes in methionine metabolism and histone H3 trimethylation are linked to mitochondrial defects in multiple sclerosis. J Neurosci 35:15170–15186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal NK, Freeman E, Arning E, Wasek B, Clements R, Sheppard C et al (2018) Dysregulation of methionine metabolism in multiple sclerosis. Neurochem Int 112:1–4

    Article  CAS  PubMed  Google Scholar 

  • So JY, Lee HJ, Smolarek AK, Paul S, Wang CX, Maehr H et al (2011) A novel gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Mol Pharmacol 79:360–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokratous M, Dardiotis E, Bellou E, Tsouris Z, Michalopoulou A, Dardioti M et al (2018) CpG Island methylation patterns in relapsing-remitting multiple sclerosis. J Mol Neurosci 64:478–484

    Article  CAS  PubMed  Google Scholar 

  • Sondergaard HB, Hesse D, Krakauer M, Sorensen PS, Sellebjerg F (2013) Differential microRNA expression in blood in multiple sclerosis. Mult Scler 19:1849–1857

    Article  CAS  PubMed  Google Scholar 

  • Su RC, Becker AB, Kozyrskyj AL, Hayglass KT (2008) Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 121(57–63):e53

    Google Scholar 

  • Sun B, Hu L, Luo ZY, Chen XP, Zhou HH, Zhang W (2016) DNA methylation perspectives in the pathogenesis of autoimmune diseases. Clin Immunol 164:21–27

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H et al (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7587

    Article  CAS  PubMed  Google Scholar 

  • Talebi F, Ghorbani S, Chan WF, Boghozian R, Masoumi F, Ghasemi S et al (2017) MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. J Neuroinflammation 14:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tegla CA, Azimzadeh P, Andrian-Albescu M, Martin A, Cudrici CD, Trippe R 3rd et al (2014) SIRT1 is decreased during relapses in patients with multiple sclerosis. Exp Mol Pathol 96:139–148

    Article  CAS  PubMed  Google Scholar 

  • Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12:1143–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Bo L, Mork S, Chang A (1999) Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 98:49–56

    Article  CAS  PubMed  Google Scholar 

  • van der Ree MH, de Vree JM, Stelma F, Willemse S, van der Valk M, Rietdijk S et al (2017) Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389:709–717

    Article  PubMed  CAS  Google Scholar 

  • van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L et al (2012) Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 9:156

    PubMed  PubMed Central  Google Scholar 

  • van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–1396

    Article  PubMed  Google Scholar 

  • Vistbakka J, Elovaara I, Lehtimaki T, Hagman S (2017) Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult Scler 23:403–412

    Article  CAS  PubMed  Google Scholar 

  • Vistbakka J, Sumelahti ML, Lehtimaki T, Elovaara I, Hagman S (2018) Evaluation of serum miR-191-5p, miR-24-3p, miR-128-3p, and miR-376c-3 in multiple sclerosis patients. Acta Neurol Scand 138:130–136

    Article  CAS  PubMed  Google Scholar 

  • Walport LJ, Hopkinson RJ, Chowdhury R, Schiller R, Ge W, Kawamura A et al (2016) Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 7:11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan C, Ping CY, Shang XY, Tian JT, Zhao SH, Li L et al (2016) MicroRNA 182 inhibits CD4(+)CD25(+)Foxp3(+) Treg differentiation in experimental autoimmune encephalomyelitis. Clin Immunol 173:109–116

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang Y (2013) Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta 1829:1126–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L (2018) Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 14:565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang J, Yu Y, Ma T, Chen P, Zhou B et al (2017) Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models. Oncotarget 8:56802–56815

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19:273–280

    Article  CAS  PubMed  Google Scholar 

  • Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study G (2003) Twin concordance and sibling recurrence rates in multiple sclerosis. In: Proceedings of the national academy of sciences of the United States of America, vol 100, pp 12877–12882

    Article  CAS  Google Scholar 

  • Wingerchuk DM (2012) Smoking: effects on multiple sclerosis susceptibility and disease progression. Ther Adv Neurol Disord 5:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood DD, Ackerley CA, Brand B, Zhang L, Raijmakers R, Mastronardi FG et al (2008) Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab Invest 88:354–364

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Cerutti C, Lopez-Ramirez MA, Pryce G, King-Robson J, Simpson JE et al (2015) Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-kappaB activation. J Cereb Blood Flow Metab 35:412–423

    Article  CAS  PubMed  Google Scholar 

  • Wu R, He Q, Chen H, Xu M, Zhao N, Xiao Y et al (2017) MicroRNA-448 promotes multiple sclerosis development through induction of Th17 response through targeting protein tyrosine phosphatase non-receptor type 2 (PTPN2). Biochem Biophys Res Commun 486:759–766

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Shi X, Fan Y, Wu C, Zhang X, Minze L et al (2016) The costimulatory receptor OX40 inhibits interleukin-17 expression through activation of repressive chromatin remodeling pathways. Immunity 44:1271–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Li XK, Funeshima-Fuji N, Kimura H, Matsumoto Y, Isaka Y et al (2009) Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 9:575–581

    Article  CAS  PubMed  Google Scholar 

  • Yan S, Yim LY, Lu L, Lau CS, Chan VS (2014) MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune Netw 14:138–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang D, Wang WZ, Zhang XM, Yue H, Li B, Lin L et al (2014) MicroRNA expression aberration in Chinese patients with relapsing remitting multiple sclerosis. J Mol Neurosci 52:131–137

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Barbi J, Wu CY, Zheng Y, Vignali PD, Wu X et al (2016a) MicroRNA-17 modulates regulatory T cell function by targeting co-regulators of the Foxp3 transcription factor. Immunity 45:83–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Tan D, Piao H (2016b) Myelin basic protein citrullination in multiple sclerosis: a potential therapeutic target for the pathology. Neurochem Res 41:1845–1856

    Article  CAS  PubMed  Google Scholar 

  • Yin Q, Wang X, McBride J, Fewell C, Flemington E (2008) B-cell receptor activation induces BIC/miR-155 expression through a conserved AP-1 element. J Biol Chem 283:2654–2662

    Article  CAS  PubMed  Google Scholar 

  • Zeitelhofer M, Adzemovic MZ, Gomez-Cabrero D, Bergman P, Hochmeister S, N’Diaye M et al (2017) Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 114:E1678–E1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Braun MY (2015) Protoporphyrin treatment modulates susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice. PLoS One 10:e0145237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang F, Shi Y, Wang L, Sriram S (2011) Role of HDAC3 on p53 expression and apoptosis in T cells of patients with multiple sclerosis. PLoS One 6:e16795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience 221:140–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266:56–63

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lee SM, Shannon S, Gao B, Chen W, Chen A et al (2009) The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J Clin Invest 119:3048–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Ke F, Liu Z, Bai J, Liu J, Yan S et al (2015a) MicroRNA-31 negatively regulates peripherally derived regulatory T-cell generation by repressing retinoic acid-inducible protein 3. Nat Commun 6:7639

    Article  PubMed  Google Scholar 

  • Zhang R, Tian A, Wang J, Shen X, Qi G, Tang Y (2015b) miR26a modulates Th17/T reg balance in the EAE model of multiple sclerosis by targeting IL6. Neuromolecular Med 17:24–34

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Xue Z, Liu Y, Liu H, Guo X, Li Y et al (2018) MicroRNA-181c promotes Th17 cell differentiation and mediates experimental autoimmune encephalomyelitis. Brain Behav Immun 70:305–314

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H et al (2018) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci 21:440–446

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y et al (2012) The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-alpha. Nat Med 18:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Zhu E, Wang X, Zheng B, Wang Q, Hao J, Chen S et al (2014) miR-20b suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis by targeting RORgammat and STAT3. J Immunol 192:5599–5609

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No conflicts of interest, financial, or otherwise, are declared by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Sau-Fong Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, V.SF. (2020). Epigenetics in Multiple Sclerosis. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_12

Download citation

Publish with us

Policies and ethics