Skip to main content

Phosphorylation: A Fast Switch For Checkpoint Signaling

  • Chapter
  • First Online:
Regulation of Cancer Immune Checkpoints

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1248))

Abstract

Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Hoessli DC, Walker-Nasir E, Choudhary MI, Rafik SM, Shakoori AR et al (2006) Phosphorylation and glycosylation interplay: protein modifications at hydroxy amino acids and prediction of signaling functions of the human beta3 integrin family. J Cell Biochem 99(3):706–718

    Article  CAS  PubMed  Google Scholar 

  • Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C et al (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science (New York, NY) 318(5853):1141–1143

    Article  CAS  Google Scholar 

  • Andreae S, Buisson S, Triebel F (2003) MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 102(6):2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772

    Article  CAS  PubMed  Google Scholar 

  • Arulraj T, Barik D (2018) Mathematical modeling identifies Lck as a potential mediator for PD-1 induced inhibition of early TCR signaling. PLoS ONE 13(10):e0206232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A et al (2000) Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403(6766):211–216

    Article  CAS  PubMed  Google Scholar 

  • Bae J, Lee SJ, Park CG, Lee YS, Chun T (2014) Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol (Baltimore, Md, 1950) 193(6):3101–3112

    Google Scholar 

  • Baltz KM, Krusch M, Bringmann A, Brossart P, Mayer F, Kloss M et al (2007) Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell interactions. FASEB J: Off Publ Fed Am Soc Exp Biol 21(10):2442–2454

    Article  CAS  Google Scholar 

  • Baroja ML, Luxenberg D, Chau T, Ling V, Strathdee CA, Carreno BM et al (2000) The inhibitory function of CTLA-4 does not require its tyrosine phosphorylation. J Immunol (Baltimore, Md, 1950) 164(1):49–55

    Google Scholar 

  • Baroja ML, Vijayakrishnan L, Bettelli E, Darlington PJ, Chau TA, Ling V et al (2002) Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol (Baltimore, Md, 1950) 168(10):5070–5078

    Google Scholar 

  • Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411(6835):355–365

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw JD, Lu P, Leytze G, Rodgers J, Schieven GL, Bennett KL et al (1997) Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin-associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry 36(50):15975–15982

    Article  CAS  PubMed  Google Scholar 

  • Brodt P, Gordon J (1978) Anti-tumor immunity in B lymphocyte-deprived mice. I. immunity to a chemically induced tumor. J Immunol (Baltimore, Md, 1950) 121(1):359–62

    Google Scholar 

  • Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13(4):257–269

    Article  CAS  PubMed  Google Scholar 

  • Bu LL, Yu GT, Wu L, Mao L, Deng WW, Liu JF et al (2017) STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J Dent Res 96(9):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett G, Kennedy EP (1954) The enzymatic phosphorylation of proteins. J Biol Chem 211(2):969–980

    CAS  PubMed  Google Scholar 

  • Byun HJ, Jung WW, Lee DS, Kim S, Kim SJ, Park CG et al (2007) Proliferation of activated CD1d-restricted NKT cells is down-modulated by lymphocyte activation gene-3 signaling via cell cycle arrest in S phase. Cell Biol Int 31(3):257–262

    Article  CAS  PubMed  Google Scholar 

  • Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA et al (2001) Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF beta is reversed by IL-15. J Immunol (Baltimore, Md, 1950) 167(1):553–561

    Google Scholar 

  • Cannon MJ, Goyne HE, Stone PJ, Macdonald LJ, James LE, Cobos E et al (2013) Modulation of p38 MAPK signaling enhances dendritic cell activation of human CD4+ Th17 responses to ovarian tumor antigen. Cancer Immunol Immunother: CII 62(5):839–849

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Zhao Y, Wang J, Dai B, Gentile E, Lin J et al (2017) TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC). Oncotarget 8(64):107621–107629

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbotti G, Barisione G, Airoldi I, Mezzanzanica D, Bagnoli M, Ferrero S et al (2015) IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget 6(41):43267–43280

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbotti G, Nikpoor AR, Vacca P, Gangemi R, Giordano C, Campelli F et al (2017) IL-27 mediates HLA class I up-regulation, which can be inhibited by the IL-6 pathway, in HLA-deficient Small Cell Lung Cancer cells. J Exp Clin Cancer Res: CR 36(1):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO et al (2018) Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol Cell 71(4):606–20.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers CA, Allison JP (1996) The role of tyrosine phosphorylation and PTP-1C in CTLA-4 signal transduction. Eur J Immunol 26(12):3224–3229

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay S, Chakraborty NG (2009) GITR expression on T-cell receptor-stimulated human CD8 T cell in a JNK-dependent pathway. Indian J Hum Genet 15(3):121–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen NH, Cheong KA, Kim CH, Noh M, Lee AY (2013) Glucosamine induces activated T cell apoptosis through reduced T cell receptor. Scand J Immunol 78(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang J, Jia L, Liu J, Tian Y (2016) Attenuation of the programmed cell death-1 pathway increases the M1 polarization of macrophages induced by zymosan. Cell Death Dis 7:e2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CC, Lin HC, Tsai KJ, Chiang YW, Lim KH, Chen CG et al (2018) Epidermal growth factor induces STAT1 expression to exacerbate the IFNr-mediated PD-L1 axis in epidermal growth factor receptor-positive cancers. Mol Carcinog 57(11):1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ et al (2000) Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403(6766):216–220

    Article  CAS  PubMed  Google Scholar 

  • Chikuma S, Murakami M, Tanaka K, Uede T (2000) Janus kinase 2 is associated with a box 1-like motif and phosphorylates a critical tyrosine residue in the cytoplasmic region of cytotoxic T lymphocyte associated molecule-4. J Cell Biochem 78(2):241–250

    Article  CAS  PubMed  Google Scholar 

  • Cho HI, Park CG, Kim J (1999) Reconstitution of killer cell inhibitory receptor-mediated signal transduction machinery in a cell-free model system. Arch Biochem Biophys 368(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Chou FC, Shieh SJ, Sytwu HK (2009) Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. Eur J Immunol 39(9):2403–2411

    Article  CAS  PubMed  Google Scholar 

  • Chuang E, Lee KM, Robbins MD, Duerr JM, Alegre ML, Hambor JE et al (1999) Regulation of cytotoxic T lymphocyte-associated molecule-4 by Src kinases. J Immunol (Baltimore, Md, 1950) 162(3):1270–1277

    Google Scholar 

  • Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG et al (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13(3):313–322

    Article  CAS  PubMed  Google Scholar 

  • Coelho MA, de Carne Trecesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47(6):1083–99.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen P (2000) The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci 25(12):596–601

    Article  CAS  PubMed  Google Scholar 

  • Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–E130

    Article  CAS  PubMed  Google Scholar 

  • Coombs MR, Harrison ME, Hoskin DW (2016) Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett 380(2):424–433

    Article  CAS  PubMed  Google Scholar 

  • Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC et al (2001) Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell 105(6):721–732

    Article  CAS  PubMed  Google Scholar 

  • Darvin P, Sasidharan Nair V, Elkord E (2019) PD-L1 expression in human breast cancer stem cells is epigenetically regulated through posttranslational histone modifications. J Oncol. 2019:3958908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson D, Schraven B, Veillette A (2007) PAG-associated FynT regulates calcium signaling and promotes anergy in T lymphocytes. Mol Cell Biol 27(5):1960–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C (2019) HDAC3 inhibition upregulates PD-L1 expression in B-cell lymphomas and augments the efficacy of anti-PD-L1 therapy. Mol Cancer Ther 18(5):900–908

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Chen X, Xu X, Qian Y, Liang G, Yao F et al (2019) PARP1 Suppresses the Transcription of PD-L1 by Poly(ADP-Ribosyl)ating STAT3. Cancer Immunol Res 7(1):136–149

    Article  PubMed  Google Scholar 

  • Doi T, Ishikawa T, Okayama T, Oka K, Mizushima K, Yasuda T et al (2017) The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines. Oncol Rep 37(3):1545–1554

    Google Scholar 

  • Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL (2006) Post-translational modifications of naturally processed MHC-binding epitopes. Curr Opin Immunol 18(1):92–97

    Article  CAS  PubMed  Google Scholar 

  • Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348

    Article  CAS  PubMed  Google Scholar 

  • Fairbanks G, Palek J, Dino JE, Liu PA (1983) Protein kinases and membrane protein phosphorylation in normal and abnormal human erythrocytes: variation related to mean cell age. Blood 61(5):850–857

    Article  CAS  PubMed  Google Scholar 

  • Feng ZM, Guo SM (2016) Tim-3 facilitates osteosarcoma proliferation and metastasis through the NF-kappaB pathway and epithelial-mesenchymal transition. Genet Mol Res: GMR 15(3)

    Google Scholar 

  • Fischer EH, Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216(1):121–132

    CAS  PubMed  Google Scholar 

  • Fischer OM, Streit S, Hart S, Ullrich A (2003) Beyond herceptin and gleevec. Curr Opin Chem Biol 7(4):490–495

    Article  CAS  PubMed  Google Scholar 

  • Folkl A, Bienzle D (2010) Structure and function of programmed death (PD) molecules. Vet Immunol Immunopathol 134(1–2):33–38

    Article  CAS  PubMed  Google Scholar 

  • Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M et al (2018) Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology 7(4):e1412909

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatta L, Calviello G, Di Nicuolo F, Pace L, Ubaldi V, Doria G et al (2002) Cytotoxic T lymphocyte-associated antigen-4 inhibits integrin-mediated stimulation. Immunology 107(2):209–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautron AS, Dominguez-Villar M, de Marcken M, Hafler DA (2014) Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells. Eur J Immunol 44(9):2703–2711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon J, Holden HT, Segal S, Feldman M (1982) Anti-tumor immunity in B-lymphocyte-deprived mice. III. immunity to primary moloney sarcoma virus-induced tumors. Int J Cancer 29(3):351–7

    Google Scholar 

  • Gorini G, Harris RA, Mayfield RD (2014) Proteomic approaches and identification of novel therapeutic targets for alcoholism. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 39(1):104–130

    Article  CAS  Google Scholar 

  • Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E et al (2017) Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2(2):e000213

    Article  PubMed  PubMed Central  Google Scholar 

  • Grzywnowicz M, Karabon L, Karczmarczyk A, Zajac M, Skorka K, Zaleska J et al (2015) The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma 56(10):2908–2913

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Wang L, Wu Y, Liu JP (2019) Undo the brake of tumour immune tolerance with antibodies, peptide mimetics and small molecule compounds targeting PD-1/PD-L1 checkpoint at different locations for acceleration of cytotoxic immunity to cancer cells. Clin Exp Pharmacol Physiol 46(2):105–115

    Article  CAS  PubMed  Google Scholar 

  • Guerra N, Guillard M, Angevin E, Echchakir H, Escudier B, Moretta A et al (2000) Killer inhibitory receptor (CD158b) modulates the lytic activity of tumor-specific T lymphocytes infiltrating renal cell carcinomas. Blood 95(9):2883–2889

    Article  CAS  PubMed  Google Scholar 

  • Guerra N, Michel F, Gati A, Gaudin C, Mishal Z, Escudier B et al (2002) Engagement of the inhibitory receptor CD158a interrupts TCR signaling, preventing dynamic membrane reorganization in CTL/tumor cell interaction. Blood 100(8):2874–2881

    Article  CAS  PubMed  Google Scholar 

  • Guntermann C, Alexander DR (2002) CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol (Baltimore, Md, 1950) 168(9):4420–4429

    Google Scholar 

  • Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z et al (2018) Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol 9:1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo R, Li Y, Wang Z, Bai H, Duan J, Wang S et al (2019) Hypoxia-inducible factor-1alpha and nuclear factor-kappaB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci

    Google Scholar 

  • Hanabuchi S, Watanabe N, Wang YH, Wang YH, Ito T, Shaw J et al (2006) Human plasmacytoid predendritic cells activate NK cells through glucocorticoid-induced tumor necrosis factor receptor-ligand (GITRL). Blood 107(9):3617–3623

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Chapuy B, Monti S, Sun HH, Rodig SJ, Shipp MA (2014) Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B-cell lymphoma growth in vitro and in vivo. Clin Cancer Res: Off J Am Assoc Cancer Res 20(10):2674–2683

    Article  CAS  Google Scholar 

  • Henel G, Singh K, Cui D, Pryshchep S, Lee WW, Weyand CM et al (2006) Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin-like receptors. Blood 107(11):4449–4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson SM, Macaulay R, Franzese O, Akbar AN (2012) Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology 135(4):355–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand D, Uhle F, Sahin D, Krauser U, Weigand MA, Heeg K (2018) The interplay of notch signaling and STAT3 in TLR-activated human primary monocytes. Front Cell Infect Microbiol 8:241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoff H, Kolar P, Ambach A, Radbruch A, Brunner-Weinzierl MC (2010) CTLA-4 (CD152) inhibits T cell function by activating the ubiquitin ligase Itch. Mol Immunol 47(10):1875–1881

    Article  CAS  PubMed  Google Scholar 

  • Horita H, Law A, Hong S, Middleton K (2017) Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton. Neoplasia (New York, NY) 19(4):346–353

    Article  CAS  Google Scholar 

  • Hsu JM, Li CW, Lai YJ, Hung MC (2018) Posttranslational modifications of PD-L1 and their applications in cancer therapy. Can Res 78(22):6349–6353

    Article  CAS  Google Scholar 

  • Hu H, Rudd CE, Schneider H (2001) Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem Biophys Res Commun 288(3):573–578

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Batth IS, Xia X, Li S (2016) Regulation of NKG2D(+)CD8(+) T-cell-mediated antitumor immune surveillance: Identification of a novel CD28 activation-mediated, STAT3 phosphorylation-dependent mechanism. Oncoimmunology 5(12):e1252012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21(4):503–513

    Article  CAS  PubMed  Google Scholar 

  • Huang CT, Chang MC, Chen YL, Chen TC, Chen CA, Cheng WF (2015) Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation. Cancer Lett 359(1):117–126

    Article  CAS  PubMed  Google Scholar 

  • Humphrey SJ, James DE, Mann M (2015) Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol Metab 26(12):676–687

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236

    Article  CAS  PubMed  Google Scholar 

  • Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM et al (2015) Control of PI(3) kinase in T reg cells maintains homeostasis and lineage stability. Nat Immunol 16(2):188–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram VM (1995) Alzheimer tangles and abnormal phosphorylation. Science (New York, NY) 267(5206):1889–1890

    Article  CAS  Google Scholar 

  • Jeffery HC, Jeffery LE, Lutz P, Corrigan M, Webb GJ, Hirschfield GM et al (2017) Low-dose interleukin-2 promotes STAT-5 phosphorylation, Treg survival and CTLA-4-dependent function in autoimmune liver diseases. Clin Exp Immunol 188(3):394–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji HB, Liao G, Faubion WA, Abadia-Molina AC, Cozzo C, Laroux FS et al (2004) Cutting edge: the natural ligand for glucocorticoid-induced TNF receptor-related protein abrogates regulatory T cell suppression. J Immunol (Baltimore, Md, 1950) 172(10):5823–5827

    Google Scholar 

  • Jiang X, Yu J, Shi Q, Xiao Y, Wang W, Chen G et al (2015) Tim-3 promotes intestinal homeostasis in DSS colitis by inhibiting M1 polarization of macrophages. Clin Immunol (Orlando, Fla) 160(2):328–335

    Article  CAS  Google Scholar 

  • Jin X, Ding D, Yan Y, Li H, Wang B, Ma L et al (2019) Phosphorylated RB promotes cancer immunity by inhibiting NF-kappaB activation and PD-L1 expression. Mol Cell 73(1):22–35.e6

    Article  CAS  PubMed  Google Scholar 

  • Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB et al (2018) T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res: Off J Am Assoc Cancer Res 24(4):870–881

    Article  CAS  Google Scholar 

  • Kamijo H, Miyagaki T, Shishido-Takahashi N, Nakajima R, Oka T, Suga H et al (2018) Aberrant CD137 ligand expression induced by GATA6 overexpression promotes tumor progression in cutaneous T-cell lymphoma. Blood 132(18):1922–1935

    Article  CAS  PubMed  Google Scholar 

  • Khan AN, Tomasi TB (2008) Histone deacetylase regulation of immune gene expression in tumor cells. Immunol Res 40(2):164–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Stringfield TM, Chen Y, Broxmeyer HE (2005) Modulation of cord blood CD8+ T-cell effector differentiation by TGF-beta1 and 4-1BB costimulation. Blood 105(1):274–281

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Lee SC, Lee HW (2009) CD137 ligand-mediated reverse signals increase cell viability and cytokine expression in murine myeloid cells: involvement of mTOR/p70S6 kinase and Akt. Eur J Immunol 39(9):2617–2628

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Lee EA, Quang NN, Cho HR, Kwon B (2011) Recombinant TAT-CD137 ligand cytoplasmic domain fusion protein induces the production of IL-6 and TNF-alpha in peritoneal macrophages. Immune Netw 11(4):216–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Knieke K, Lingel H, Chamaon K, Brunner-Weinzierl MC (2012) Migration of Th1 lymphocytes is regulated by CD152 (CTLA-4)-mediated signaling via PI3 kinase-dependent Akt activation. PLoS ONE 7(3):e31391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koguchi K, Anderson DE, Yang L, O’Connor KC, Kuchroo VK, Hafler DA (2006) Dysregulated T cell expression of TIM3 in multiple sclerosis. J Exp Med 203(6):1413–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima R, Ohno T, Iikura M, Niki T, Hirashima M, Iwaya K et al (2014) Galectin-9 enhances cytokine secretion, but suppresses survival and degranulation, in human mast cell line. PLoS ONE 9(1):e86106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo K, Shaim H, Thompson PA, Burger JA, Keating M, Estrov Z et al (2018) Ibrutinib modulates the immunosuppressive CLL microenvironment through STAT3-mediated suppression of regulatory B-cell function and inhibition of the PD-1/PD-L1 pathway. Leukemia 32(4):960–970

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Jun HS, Khil LY, Yoon JW (2004) Role of CTLA-4 in the activation of single-and double-positive thymocytes. J Immunol (Baltimore, Md, 1950) 173(11):6645–6653

    Google Scholar 

  • Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Lazrek Y, Dubreuil O, Garambois V, Gaborit N, Larbouret C, Le Clorennec C et al (2013) Anti-HER3 domain 1 and 3 antibodies reduce tumor growth by hindering HER2/HER3 dimerization and AKT-induced MDM2, XIAP, and FoxO1 phosphorylation. Neoplasia (New York, NY) 15(3):335–347

    Article  CAS  Google Scholar 

  • LeBlanc R, Hideshima T, Catley LP, Shringarpure R, Burger R, Mitsiades N et al (2004) Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 103(5):1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W et al (1998) Molecular basis of T cell inactivation by CTLA-4. Science (New York, NY) 282(5397):2263–2266

    Article  CAS  Google Scholar 

  • Lee SJ, Long M, Adler AJ, Mittler RS, Vella AT (2009) The IKK-neutralizing compound Bay11 kills supereffector CD8 T cells by altering caspase-dependent activation-induced cell death. J Leukoc Biol 85(1):175–185

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Shin JH, Longmire M, Wang H, Kohrt HE, Chang HY et al (2016) CD44+ Cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin Cancer Res: Off J Am Assoc Cancer Res 22(14):3571–3581

    Article  CAS  Google Scholar 

  • Leng Q, Bentwich Z, Borkow G (2006) Increased TGF-beta, Cbl-b and CTLA-4 levels and immunosuppression in association with chronic immune activation. Int Immunol 18(5):637–644

    Article  CAS  PubMed  Google Scholar 

  • Levene PAAC (1906) The cleavage products of vitellin. J Biol Chem 2:127–133

    Google Scholar 

  • Li D, Gal I, Vermes C, Alegre ML, Chong AS, Chen L et al (2004) Cutting edge: Cbl-b: one of the key molecules tuning CD28- and CTLA-4-mediated T cell costimulation. J Immunol (Baltimore, Md, 1950) 173(12):7135–7139

    Google Scholar 

  • Li Y, Feng J, Geng S, Geng S, Wei H, Chen G et al (2011) The N- and C-terminal carbohydrate recognition domains of galectin-9 contribute differently to its multiple functions in innate immunity and adaptive immunity. Mol Immunol 48(4):670–677

    Article  CAS  PubMed  Google Scholar 

  • Li J, Andreyev O, Chen M, Marco M, Iwase H, Long C et al (2013) Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cell Immunol 285(1–2):23–30

    Article  CAS  PubMed  Google Scholar 

  • Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW et al (2016a) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Shayan G, Avery L, Jie HB, Gildener-Leapman N, Schmitt N et al (2016b) Tumor-infiltrating Tim-3(+) T cells proliferate avidly except when PD-1 is co-expressed: evidence for intracellular cross talk. Oncoimmunology 5(10):e1200778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li X, Liu S, Guo L, Zhang B, Zhang J et al (2017) Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology (Baltimore, MD) 66(6):1920–1933

    Article  CAS  Google Scholar 

  • Lim YP (2005) Mining the tumor phosphoproteome for cancer markers. Clinical cancer research: an official journal of the American Association for Cancer Research. 11(9):3163–3169

    Article  CAS  Google Scholar 

  • Lin PL, Wu TC, Wu DW, Wang L, Chen CY, Lee H (2017) An increase in BAG-1 by PD-L1 confers resistance to tyrosine kinase inhibitor in non-small cell lung cancer via persistent activation of ERK signalling. Eur J Cancer (Oxford, England: 1990) 85:95–105

    Google Scholar 

  • Liu B, Li Z, Mahesh SP, Pantanelli S, Hwang FS, Siu WO et al (2008) Glucocorticoid-induced tumor necrosis factor receptor negatively regulates activation of human primary natural killer (NK) cells by blocking proliferative signals and increasing NK cell apoptosis. J Biol Chem 283(13):8202–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Zhou H, Langdon WY, Zhang J (2014) E3 ubiquitin ligase Cbl-b in innate and adaptive immunity. Cell Cycle (Georgetown, Tex) 13(12):1875–1884

    Article  CAS  Google Scholar 

  • Liu S, Chen S, Yuan W, Wang H, Chen K, Li D et al (2017a) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8(59):99901–99912

    PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhao Y, Fang J, Cui R, Xiao Y, Xu Q (2017b) SHP2 negatively regulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in prostate cancer cells. Oncotarget 8(32):53518–53530

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang Y, Wang H, Wang B, Zhao K, Jiang W et al (2018) Syntenin1/MDA-9 (SDCBP) induces immune evasion in triple-negative breast cancer by upregulating PD-L1. Breast Cancer Res Treat 171(2):345–357

    Article  CAS  PubMed  Google Scholar 

  • Loughrey Chen S, Huddleston MJ, Shou W, Deshaies RJ, Annan RS, Carr SA (2002) Mass spectrometry-based methods for phosphorylation site mapping of hyperphosphorylated proteins applied to Net1, a regulator of exit from mitosis in yeast. Mol Cell Proteomics 1(3):186–196

    Article  CAS  PubMed  Google Scholar 

  • Mackay F, Kalled SL (2002) TNF ligands and receptors in autoimmunity: an update. Curr Opin Immunol 14(6):783–790

    Article  CAS  PubMed  Google Scholar 

  • Marengere LE, Mirtsos C, Kozieradzki I, Veillette A, Mak TW, Penninger JM (1997) Proto-oncoprotein Vav interacts with c-Cbl in activated thymocytes and peripheral T cells. J Immunol (Baltimore, Md, 1950) 159(1):70–76

    Google Scholar 

  • McVicar DW, Burshtyn DN (2001) Intracellular signaling by the killer immunoglobulin-like receptors and Ly49. Sci STKE: Signal Transduct Knowl Environ 2001(75):re1

    Google Scholar 

  • Miyatake S, Nakaseko C, Umemori H, Yamamoto T, Saito T (1998) Src family tyrosine kinases associate with and phosphorylate CTLA-4 (CD152). Biochem Biophys Res Commun 249(2):444–448

    Article  CAS  PubMed  Google Scholar 

  • Mo X, Zhang H, Preston S, Martin K, Zhou B, Vadalia N et al (2018) Interferon-gamma signaling in melanocytes and melanoma cells regulates expression of CTLA-4. Cancer Res 78(2):436–450

    Article  CAS  PubMed  Google Scholar 

  • Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J et al (2008) Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 9(11):1236–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed F, Stones DH, Zarling AL, Willcox CR, Shabanowitz J, Cummings KL et al (2017) The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Oncotarget 8(33):54160–54172

    Article  PubMed  PubMed Central  Google Scholar 

  • Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE et al (2013) High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood 121(8):1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno H et al (2008) Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. J Immunol (Baltimore, Md, 1950) 181(11):7660–7669

    Google Scholar 

  • Nakagawa S, Serada S, Kakubari R, Hiramatsu K, Sugase T, Matsuzaki S et al (2018) Intratumoral delivery of an adenoviral vector carrying the SOCS-1 gene enhances T-cell-mediated antitumor immunity by suppressing PD-L1. Mol Cancer Ther 17(9):1941–1950

    Article  CAS  PubMed  Google Scholar 

  • Nakaseko C, Miyatake S, Iida T, Hara S, Abe R, Ohno H et al (1999) Cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J Exp Med 190(6):765–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam KO, Kang H, Shin SM, Cho KH, Kwon B, Kwon BS et al (2005) Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J Immunol (Baltimore, Md, 1950) 174(4):1898–1905

    Google Scholar 

  • Nobumoto A, Oomizu S, Arikawa T, Katoh S, Nagahara K, Miyake M et al (2009) Galectin-9 expands unique macrophages exhibiting plasmacytoid dendritic cell-like phenotypes that activate NK cells in tumor-bearing mice. Clin Immunol (Orlando, Fla) 130(3):322–330

    Article  CAS  Google Scholar 

  • Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R et al (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 94(12):6216–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak M, Arredouani MS, Tun-Kyi A, Schmidt-Wolf I, Sanda MG, Balk SP et al (2010) Defective NKT cell activation by CD1d+ TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS ONE 5(6):e11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98(24):13866–13871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson C, Riesbeck K, Dohlsten M, Michaelsson E (1999) CTLA-4 ligation suppresses CD28-induced NF-kappaB and AP-1 activity in mouse T cell blasts. J Biol Chem 274(20):14400–14405

    Article  CAS  PubMed  Google Scholar 

  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW (1997) Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272(40):24735–24738

    Article  CAS  PubMed  Google Scholar 

  • Ou W, Thapa RK, Jiang L, Soe ZC, Gautam M, Chang JH et al (2018) Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. J Controll Release: Off J Controll Release Soc 281:84–96

    Article  CAS  Google Scholar 

  • Oussa NA, Soumounou Y, Sabbagh L (2013) TRAF1 phosphorylation on Serine 139 modulates NF-kappaB activity downstream of 4-1BB in T cells. Biochem Biophys Res Commun 432(1):129–134

    Article  CAS  PubMed  Google Scholar 

  • Pao LI, Badour K, Siminovitch KA, Neel BG (2007) Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523

    Article  CAS  PubMed  Google Scholar 

  • Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25(21):9543–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signaling 5(230):ra46

    Google Scholar 

  • Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33(16):3091–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters C, Oberg HH, Kabelitz D, Wesch D (2014) Phenotype and regulation of immunosuppressive Vdelta2-expressing gammadelta T cells. Cell Mol life Sci: CMLS 71(10):1943–1960

    Article  CAS  PubMed  Google Scholar 

  • Pinton L, Solito S, Damuzzo V, Francescato S, Pozzuoli A, Berizzi A et al (2016) Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression. Oncotarget 7(2):1168–1184

    Article  PubMed  Google Scholar 

  • Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M et al (2007) The loss of telomerase activity in highly differentiated CD8+ CD28-CD27− T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol (Baltimore, Md, 1950) 178(12):7710–7719

    Google Scholar 

  • Prestipino A, Emhardt AJ, Aumann K, O’Sullivan D, Gorantla SP, Duquesne S et al (2018) Oncogenic JAK2(V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med 10(429)

    Google Scholar 

  • Putz EM, Gotthardt D, Sexl V (2014) STAT1-S727—the license to kill. Oncoimmunology. 3(9):e955441

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Pei D, Cheng T, Wu C, Pu X, Chen X et al (2015) CD137 ligand-mediated reverse signaling inhibits proliferation and induces apoptosis in non-small cell lung cancer. Med Oncol (Northwood, London, England) 32(3):44

    Article  CAS  Google Scholar 

  • Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4(5):627–630

    Article  CAS  PubMed  Google Scholar 

  • Quan L, Lan X, Meng Y, Guo X, Guo Y, Zhao L et al (2018) BTLA marks a less cytotoxic T-cell subset in diffuse large B-cell lymphoma with high expression of checkpoints. Exp Hematol 60(47–56):e1

    Google Scholar 

  • Radhakrishnan S, Nguyen LT, Ciric B, Van Keulen VP, Pease LR (2007) B7-DC/PD-L2 cross-linking induces NF-kappaB-dependent protection of dendritic cells from cell death. J Immunol (Baltimore, Md, 1950) 178(3):1426–32

    Google Scholar 

  • Radivojac P, Baenziger PH, Kann MG, Mort ME, Hahn MW, Mooney SD (2008) Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24(16):i241–i247

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolvering C, Zimmer AD, Ginolhac A, Margue C, Kirchmeyer M, Servais F et al (2018) The PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by alpha-PD-L1 or alpha-IL6 antibodies. J Leukoc Biol 104(5):969–985

    Article  CAS  PubMed  Google Scholar 

  • Ronchetti S, Zollo O, Bruscoli S, Agostini M, Bianchini R, Nocentini G et al (2004) GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34(3):613–622

    Article  CAS  PubMed  Google Scholar 

  • Sadahiro H, Kang KD, Gibson JT, Minata M, Yu H, Shi J et al (2018) Activation of the receptor tyrosine kinase AXL regulates the immune microenvironment in glioblastoma. Can Res 78(11):3002–3013

    Article  CAS  Google Scholar 

  • Saito T (1998) Negative regulation of T cell activation. Curr Opin Immunol 10(3):313–321

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Yamasaki S (2003) Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 192:143–160

    Article  CAS  PubMed  Google Scholar 

  • Salter AI, Ivey RG, Kennedy JJ, Voillet V, Rajan A, Alderman EJ et al (2018) Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signaling 11(544)

    Google Scholar 

  • Samelson LE, Davidson WF, Morse HC 3rd, Klausner RD (1986) Abnormal tyrosine phosphorylation on T-cell receptor in lymphoproliferative disorders. Nature 324(6098):674–676

    Article  CAS  PubMed  Google Scholar 

  • Saunders PA, Hendrycks VR, Lidinsky WA, Woods ML (2005) PD-L2: PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion. Eur J Immunol 35(12):3561–3569

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Rudd CE (2000) Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem Biophys Res Commun 269(1):279–283

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Schwartzberg PL, Rudd CE (1998) Resting lymphocyte kinase (Rlk/Txk) phosphorylates the YVKM motif and regulates PI 3-kinase binding to T-cell antigen CTLA-4. Biochem Biophys Res Commun 252(1):14–19

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, da Rocha Dias S, Hu H, Rudd CE (2001) A regulatory role for cytoplasmic YVKM motif in CTLA-4 inhibition of TCR signaling. Eur J Immunol 31(7):2042–2050

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Valk E, Leung R, Rudd CE (2008) CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS ONE 3(12):e3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz M, Zhang Y, Rosenblatt JD (2016) B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarz H, Tuckwell J, Lotz M (1993) A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene 134(2):295–298

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Divekar AA, Hilchey SP, Cho HM, Newman CL, Shin SU et al (2005) Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 117(4):574–586

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz S, Bozorgmehr N, Koleva P, Namdar A, Jovel J, Fava RA et al (2018) CD71+ VISTA+ erythroid cells promote the development and function of regulatory T cells through TGF-beta. PLoS Biol 16(12):e2006649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shayan G, Srivastava R, Li J, Schmitt N, Kane LP, Ferris RL (2017) Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology 6(1):e1261779

    Article  CAS  PubMed  Google Scholar 

  • Shen P, Su Z, Wang S, Xu H (2014) Bioinformatic analysis of mouse glucocorticoid-induced tumor necrosis factor receptor-related protein. Xi bao yu fen zi mian yi xue za zhi = Chinese J Cell Mol Immunol 30(11):1205–1208

    Google Scholar 

  • Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574(1–3):37–41

    Article  CAS  PubMed  Google Scholar 

  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3(2):135–142

    Article  CAS  PubMed  Google Scholar 

  • Shin HH, Lee MH, Kim SG, Lee YH, Kwon BS, Choi HS (2002) Recombinant glucocorticoid induced tumor necrosis factor receptor (rGITR) induces NOS in murine macrophage. FEBS Lett 514(2–3):275–280

    Article  CAS  PubMed  Google Scholar 

  • Shiratori T, Miyatake S, Ohno H, Nakaseko C, Isono K, Bonifacino JS et al (1997) Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6(5):583–589

    Article  CAS  PubMed  Google Scholar 

  • Sinclair NR (1999) Why so many coinhibitory receptors? Scand J Immunol 50(1):10–13

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK (2017) Phosphorylation: implications in cancer. Protein J 36(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Smida M, Cammann C, Gurbiel S, Kerstin N, Lingel H, Lindquist S et al (2013) PAG/Cbp suppression reveals a contribution of CTLA-4 to setting the activation threshold in T cells. Cell Commun Signaling: CCS 11(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder MR, Nakajima T, Leibson PJ, Weyand CM, Goronzy JJ (2004) Stimulatory killer Ig-like receptors modulate T cell activation through DAP12-dependent and DAP12-independent mechanisms. J Immunol (Baltimore, Md, 1950) 173(6):3725–3731

    Google Scholar 

  • Song TL, Nairismagi ML, Laurensia Y, Lim JQ, Tan J, Li ZM et al (2018) Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 132(11):1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suda K, Rozeboom L, Furugaki K, Yu H, Melnick MAC, Ellison K et al (2017) Increased EGFR phosphorylation correlates with higher programmed death ligand-1 expression: analysis of TKI-resistant lung cancer cell lines. Biomed Res Int 2017:7694202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Zhao D, Wu Y, Yao R, Zhou L, Lu L et al (2018) The miR-3127-5p/p-STAT3 axis up-regulates PD-L1 inducing chemoresistance in non-small-cell lung cancer. J Cell Mol Med

    Google Scholar 

  • Thapa B, Koo BH, Kim YH, Kwon HJ, Kim DS (2014) Plasminogen activator inhibitor-1 regulates infiltration of macrophages into melanoma via phosphorylation of FAK-Tyr(9)(2)(5). Biochem Biophys Res Commun 450(4):1696–1701

    Article  CAS  PubMed  Google Scholar 

  • Thien CB, Langdon WY (2005) c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 391(Pt 2):153–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorn M, Guha P, Cunetta M, Espat NJ, Miller G, Junghans RP et al (2016) Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther 23(6):188–198

    Article  CAS  PubMed  Google Scholar 

  • Tsui FW, Martin A, Wang J, Tsui HW (2006) Investigations into the regulation and function of the SH2 domain-containing protein-tyrosine phosphatase, SHP-1. Immunol Res 35(1–2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Tuettenberg A, Hahn SA, Mazur J, Gerhold-Ay A, Scholma J, Marg I et al (2016) Kinome profiling of regulatory T Cells: a closer look into a complex intracellular network. PLoS ONE 11(2):e0149193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuyaerts S, Van Meirvenne S, Bonehill A, Heirman C, Corthals J, Waldmann H et al (2007) Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+ CD25+ regulatory T cells. J Leukoc Biol 82(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Tymoszuk P, Charoentong P, Hackl H, Spilka R, Muller-Holzner E, Trajanoski Z et al (2014) High STAT1 mRNA levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. BMC Cancer 14:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541

    Article  CAS  PubMed  Google Scholar 

  • Ulges A, Klein M, Reuter S, Gerlitzki B, Hoffmann M, Grebe N et al (2015) Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nat Immunol 16(3):267–275

    Article  CAS  PubMed  Google Scholar 

  • van de Weyer PS, Muehlfeit M, Klose C, Bonventre JV, Walz G, Kuehn EW (2006) A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochem Biophys Res Commun 351(2):571–576

    Article  CAS  PubMed  Google Scholar 

  • Vibhakar R, Juan G, Traganos F, Darzynkiewicz Z, Finger LR (1997) Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp Cell Res 232(1):25–28

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Lu C, Ning Z, Gao W, Xie Y, Zhang N et al (2017a) Tumor-associated macrophages promote Ezrin phosphorylation-mediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation. Oncotarget 8(17):28247–28259

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Ni S, Chen Q, Ma L, Jiao Z, Wang C et al (2017b) Bladder cancer cells induce immunosuppression of T cells by supporting PD-L1 expression in tumour macrophages partially through interleukin 10. Cell Biol Int 41(2):177–186

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang H, Yao H, Li C, Fang JY, Xu J (2018) Regulation of PD-L1: emerging routes for targeting tumor immune evasion. Front Pharmacol 9:536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK et al (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4(7):670–679

    Article  CAS  PubMed  Google Scholar 

  • Woods DM, Woan K, Cheng F, Wang H, Perez-Villarroel P, Lee C et al (2013) The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res 23(5):341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J (2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3(12):1375–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol (Baltimore, Md, 1950) 169(10):5392–5395

    Google Scholar 

  • Wu M, Xue YH (2008) Main regulatory factors for differentiation, development and function of naturally occurred CD4+ CD25+ regulatory T cells. Zhongguo shi yan xue ye xue za zhi. 16(1):207–212

    CAS  PubMed  Google Scholar 

  • Wu K, Zhao H, Xiu Y, Li Z, Zhao J, Xie S et al (2019) IL-21-mediated expansion of Vgamma9Vdelta2 T cells is limited by the Tim-3 pathway. Int Immunopharmacol 69:136–142

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Qiao G, Tang J, Tang R, Guo H, Warwar S et al (2015) Protein tyrosine phosphatase SHP-1 modulates T cell responses by controlling Cbl-b degradation. J Immunol (Baltimore, Md, 1950) 195(9):4218–42127

    Google Scholar 

  • Xiao X, Lao XM, Chen MM, Liu RX, Wei Y, Ouyang FZ et al (2016) PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov 6(5):546–559

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Klement JD, Lu C, Ibrahim ML, Liu K (2018) IFNAR1 controls autocrine type I IFN regulation of PD-L1 expression in myeloid-derived suppressor cells. J Immunol (Baltimore, Md, 1950) 201(1):264–277

    Google Scholar 

  • Xu L, Zhang Y, Tian K, Chen X, Zhang R, Mu X et al (2018) Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J Exp Clin Cancer Res: CR 37(1):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Poggio M, Jin HY, Shi Z, Forester CM, Wang Y et al (2019) Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat Med 25(2):301–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al (2008) PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111(6):3220–3224

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Farache J, Mingueneau M, Mathis D, Benoist C (2015) Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3. Proc Natl Acad Sci USA 112(48):14942–14947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Li CW, Chan LC, Wei Y, Hsu JM, Xia W et al (2018) Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res 28(8):862–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao A, Liu F, Chen K, Tang L, Liu L, Zhang K et al (2014) Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurother: J Am Soc Exp Neurother 11(3):636–650

    Article  CAS  Google Scholar 

  • Youlin K, Li Z, Xin G, Mingchao X, Xiuheng L, Xiaodong W (2013) Enhanced function of cytotoxic T lymphocytes induced by dendritic cells modified with truncated PSMA and 4-1BBL. Hum Vaccines Immunother 9(4):766–772

    Article  CAS  Google Scholar 

  • Yu C, Sonnen AF, George R, Dessailly BH, Stagg LJ, Evans EJ et al (2011) Rigid-body ligand recognition drives cytotoxic T-lymphocyte antigen 4 (CTLA-4) receptor triggering. J Biol Chem 286(8):6685–6696

    Article  CAS  PubMed  Google Scholar 

  • Zell T, Warden CS, Chan AS, Cook ME, Dell CL, Hunt SW et al (1998) Regulation of beta 1-integrin-mediated cell adhesion by the Cbl adaptor protein. Curr Biol: CB 8(14):814–822

    Google Scholar 

  • Zhang J, Bardos T, Li D, Gal I, Vermes C, Xu J et al (2002) Cutting edge: regulation of T cell activation threshold by CD28 costimulation through targeting Cbl-b for ubiquitination. J Immunol (Baltimore, Md, 1950) 169(5):2236–2240

    Google Scholar 

  • Zhang Y, Ma CA, Lawrence MG, Break TJ, O’Connell MP, Lyons JJ et al (2017) PD-L1 up-regulation restrains Th17 cell differentiation in STAT3 loss- and STAT1 gain-of-function patients. J Exp Med 214(9):2523–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wu L, Li Z, Zhang W, Luo F, Chu Y et al (2018a) Glycocalyx-mimicking nanoparticles improve anti-PD-L1 cancer immunotherapy through reversion of tumor-associated macrophages. Biomacromolecules 19(6):2098–2108

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT et al (2018b) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553(7686):91–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Song Y, Yang H, Liu Z, Gao L, Liang X et al (2018c) Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-kappaB/IL-6/STAT3 axis. Oncogene 37(18):2456–2468

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Dutta P, Liu J, Sabri N, Song Y, Li WX et al (2019) Tumour cell-intrinsic CTLA4 regulates PD-L1 expression in non-small cell lung cancer. J Cell Mol Med 23(1):535–542

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Pan X, Xing Y, Lu M, Chen Y, Shi M (2015) Effects of soluble programmed death ligand 1 on regulating the proliferation of T lymphocytes and its mechanism. Zhonghua yi xue za zhi. 95(6):449–452

    CAS  PubMed  Google Scholar 

  • Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Zou Q, Chen YF, Zheng XQ, Ye SF, Xu BY, Liu YX et al (2018) Novel thioredoxin reductase inhibitor butaselen inhibits tumorigenesis by down-regulating programmed death-ligand 1 expression. J Zhejiang Univ Sci B 19(9):689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Wang, P., Xu, J. (2020). Phosphorylation: A Fast Switch For Checkpoint Signaling. In: Xu, J. (eds) Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, vol 1248. Springer, Singapore. https://doi.org/10.1007/978-981-15-3266-5_15

Download citation

Publish with us

Policies and ethics