Skip to main content

Success Stories in MAS

  • Chapter
  • First Online:
Genetic Mapping and Marker Assisted Selection

Abstract

There is a tremendous amount of publications reporting the identification of new QTLs in crop plants since its first description in tomato during 1988. However, reports on the successful application of MAS in plant breeding programs are still limited. This fact is discussed in this section and reviewed the current status and applications of molecular markers in public and private sector breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Literature Cited

  • Asante MD, Amoako-Andoh FO, Traore VSE, Bissah MN, Cobb JN (2019) Marker-assisted breeding for improving the cooking and eating quality of rice. In: Quality breeding in field crops. Springer, Cham, pp 23–39

    Chapter  Google Scholar 

  • Babu ER, Mani VP, Gupta HS (2004) Combining high protein quality and hard endosperm traits through phenotypic and marker assisted selection in maize. Proceedings of the 4th international crop science congress, Brisbane

    Google Scholar 

  • Bainotti C, Fraschina J, Salines JH, Nisi JE, Dubcovsky J, Lewis SM, Bullrich L, Vanzetti L, Cuniberti M, Campos P, Formica MB, Masiero B, Alberione E, Helguera M (2009) Registration of ‘BIOINTA 2004’ wheat. J Plant Regist 3:165–169

    Article  Google Scholar 

  • Barloy D, Lemoine J, Abelard P, Tanguy AM, Rivoal R, Jahier J (2007) Marker assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20:31–40

    Article  CAS  Google Scholar 

  • Barr AR, Jefferies SP, Warner P, Moody DB, Chalmers KJ, Langridge P (2000) Marker-assisted selection in theory and practice. Proceedings of the 8th international barley genetics symposium, vol I, Adelaide, Australia: 167–178

    Google Scholar 

  • Beaver JS, Porch TG, Zapata M (2008) Registration of ‘Verano’ white bean. J Plant Regist 2:187–189

    Article  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown N, Shen X, Lubbers EL, Kumar P, McBlanchett J, Smith CW et al (2019) Registration of GA R01-40-08, a Gossypium hirsutum upland cotton germplasm line with qFL-Chr. 1 Introgressed from Gossypium barbadense conferring improved fiber length. J Plant Regist 13(3):406–410

    Google Scholar 

  • Bustamam M, Tabien RE, Suwarno A, Abalos MC, Kadir TS, Ona I, Bernardo M, Veracruz CM, Leung H (2002) Asian rice biotechnology network: improving popular cultivars through marker-assisted backcrossing by the NARES. poster presented at the International rice congress, 2002 September 16–20, Beijing, China

    Google Scholar 

  • Castro AJ et al (2003) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  CAS  PubMed  Google Scholar 

  • Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R et al (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandran S, Pukalenthy B, Adhimoolam K, Manickam D, Sampathrajan V, Chocklingam V et al (2019) Marker-assisted selection to pyramid the opaque-2 (o2) and β-carotene (crtRB1) genes in maize. Front Genet 10:859

    Article  PubMed  PubMed Central  Google Scholar 

  • Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Okporie E et al (2019) Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol Biotechnol Equip 33(1):440–455

    Google Scholar 

  • Concibido VC et al (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    Article  CAS  PubMed  Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    Article  CAS  Google Scholar 

  • Courtois B, McLaren G, Sinha PK, Prasad K, Yadava R et al (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6:55–66

    Article  CAS  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH, Carter M (2001) Implementation of markers in Australian wheat breeding. Aust J Agric Res 52:1349–1356

    Article  CAS  Google Scholar 

  • Fraley R (2006) Presentation at Monsanto European investor day, 10 Nov 2006. Available at www.monsanto.com/investors/presentations.asp

  • Gordeeva EI, Glagoleva AY, Kukoeva TV, Khlestkina EK, Shoeva OY (2019) Purple-grained barley (Hordeum vulgare L.): marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant Biol 19(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  • Han F, Romagosa I, Ullrich SE, Jones BL, Hayes PM, Wesenberg DM (1997) Molecular marker-assisted selection for malting quality traits in barley. Mol Breed 3(6):427–437

    Google Scholar 

  • Hardin B (2000) Rice breeding gets marker assists. Agric Res 48(12):11

    Google Scholar 

  • Hayes PM, Corey AE, Mundt C, Toojinda T, Vivar H (2003) Registration of ‘tango’ barley. Crop Sci 43:729–731

    Article  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • Helms TC, Nelson BD, Goos RJ (2008) Registration of ‘Sheyenne’ soybean. J Plant Regist 2:20–20

    Article  Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Ho C, McCouch R, Smith E (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448

    Article  CAS  PubMed  Google Scholar 

  • http://www.ars.usda.gov/is/AR/archive/dec00/rice1200.pdf

  • Ishimaru K (2003) Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol 133:1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jantaboon J, Siangliw M, Im-mark S, Jamboonsri W, Vanavichit A, Toojinda T (2011) Ideotypes breeding for submergence tolerance and cooking quality by MAS in rice. Field Crop Res 123(3):206–213

    Article  Google Scholar 

  • Jefferies SP, King BJ, Barr AR, Warner P, Logue SJ, Langridge P (2003) Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed 122:52–56

    Article  CAS  Google Scholar 

  • Kumar A, Dixit S, Ram T, Yadaw R, Mishra K, Mandal N (2014) Breeding high-yielding drought tolerant rice: genetic variations and conventional and molecular approaches. J Exp Bot 65:6265–6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Jindal SK, Dhaliwal MS, Sharma A, Kaur S, Jain S (2019) Gene pyramiding for elite tomato genotypes against ToLCV (Begomovirus spp.), late blight (Phytophthora infestans) and RKN (Meloidogyne spp.) for northern India farmers. Physiol Mol Biol Plants 25(5):1197–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  CAS  PubMed  Google Scholar 

  • Liang F, Deng Q, Wang Y, Xiong Y, Jin D, Li J, Wang B (2004) Molecular marker-assisted selection for yield-enhancing genes in the progeny of “9311× O. rufipogon” using SSR. Euphytica 139:159–165

    Article  CAS  Google Scholar 

  • Ma W, Zhang W, Gale KR (2003) Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51–60

    Article  CAS  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence G, Lagudah E, Ellis J, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104(8):1317–1324

    Google Scholar 

  • Michel S, Loeschenberger F, Hellinger J, Strasser V, Ametz C, Pachler B et al (2019) Improving and maintaining winter hardiness and frost tolerance in bread wheat by genomic selection. Front Plant Sci 10:1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Mudge J, Cregan PB, Kenworthy JP, Kenworthy WJ, Orf JH, Young ND (1997) Two microsatellite markers that flank the major soybean cystnematode resistance locus. Crop Sci 37:1611–1615

    Article  CAS  Google Scholar 

  • Narayanan NN, Baisakh N, Vera Cruz CM, Gnanamanickam SS, Datta K, Datta SK (2002) Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci 42:2072–2079

    Article  CAS  Google Scholar 

  • Navarro RL, Gopikrishna Warrier S, Maslog CC (2006) Genes are gems: reporting agri-biotechnology a sourcebook for journalists. International crops research institute for the semi-arid tropics

    Google Scholar 

  • Neeraja C, Maghirang-Rodriguez R, Pamplona A, Heuer S, Collard B, Septiningsih E et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  CAS  PubMed  Google Scholar 

  • Nocente F, Gazza L, Pasquini M (2007) Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155(3):329–336

    Article  CAS  Google Scholar 

  • Rai A, Mahendru-Singh A, Raghunandan K, Kumar TPJ, Sharma P, Ahlawat AK et al (2019) Marker-assisted transfer of PinaD1a gene to develop soft grain wheat cultivars. 3 Biotech 9(5):183

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N et al (2019) Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci 20(10):2585

    Google Scholar 

  • Raina M, Salgotra RK, Pandotra P, Rathour R, Singh K (2019) Genetic enhancement for semi-dwarf and bacterial blight resistance with enhanced grain quality characteristics in traditional Basmati rice through marker-assisted selection. C R Biol 342:142

    Article  PubMed  Google Scholar 

  • Ribaut JM, Ragot M (2006) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Sandhu N, Dixit S, Swamy BPM, Raman A, Kumar S, Singh SP et al (2019) Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice 12(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar RK, Bhattacharjee B (2011) Rice genotypes with SUB1 QTL differ in submergence tolerance, elongation ability during submergence and re-generation growth at re-emergence. Rice 5:7

    Article  PubMed Central  Google Scholar 

  • Sarkar RK, Das KK, Panda D, Reddy JN, Patnaik SSC, Patra BC et al (2014) Submergence tolerance in rice: biophysical constraints, physiological basis and identification of donors. Central Rice Research Institute, Cuttack, p 36

    Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL, Neeraja CN, Vergara GV, Heuer S et al (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  Google Scholar 

  • Septiningsih EM, Hidayatun N, Sanchez DL, Nugraha Y, Carandang J, Pamplona AM et al (2015) Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica 202(2):259–268

    Article  Google Scholar 

  • Shen L, Courtois B, McNally KL, Robin S, Li Z (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor Appl Genet 103:75–83

    Article  CAS  Google Scholar 

  • Singh N, Dang T, Vergara G, Pandey D, Sanchez D, Neeraja C et al (2010) Molecular marker survey and expression analyses of the rice submergence-tolerance genes SUB1A and SUB1C. Theor Appl Genet 121:1441–1453

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Gopalakrishnan S, Singh VP, Prabhu KV, Mohapatra T, Singh NK et al (2011) Marker assisted selection: a paradigm shift in Basmati breeding. Indian Journal of Genetics and Plant Breeding 71(2):120–128

    CAS  Google Scholar 

  • Singh VK et al (2012) Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crop Res 128:8–16

    Article  Google Scholar 

  • Singh R, Singh Y, Xalaxo S, Verulkar S, Yadav N, Singh S et al (2016) From QTL to varietyharnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci 242:278–287

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D, Shamim M, Mishra A, Yadav P, Kumar D, Pandey P et al (2019) Introgression of semi-dwarf gene in Kalanamak rice using marker-assisted selection breeding. Curr Sci (00113891) 116(4):597

    Google Scholar 

  • Steele K, Virk D, Kumar R, Prasad S, Witcombe J (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101:180–186

    Article  Google Scholar 

  • Stuber CW (1982) Improvement of yield and ear number resulting from selection at allozyme loci in a maize population. Crop Sci 22:737

    Article  Google Scholar 

  • Stuber CW (1995) Mapping and manipulating quantitative traits in maize. Trends Genet 11(12):477–481

    Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BM, Kumar A (2013) Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv 31:1308–1318

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Medino-Filho DH, Rick CM (1981) The effect of isozyme selection on metric characters in an interspecific backcross of tomato: basis of an early screening procedure. Theor Appl Genet 60:291–296

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xia X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S et al (2006) Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka N, Hossain MM (2019) Pyramiding three rust-resistance genes confers a high level of resistance in soybean (Glycine max). Plant Breed 138:686. https://doi.org/10.1111/pbr.12720

    Article  CAS  Google Scholar 

  • Ye X, Zhang S, Li S, Wang J, Chen H, Wang K et al (2019) Improvement of three commercial spring wheat varieties for powdery mildew resistance by marker-assisted selection. Crop Prot 125:104889

    Article  CAS  Google Scholar 

  • Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42:96–104

    PubMed  Google Scholar 

  • Zhang Z, Xu J, Xu Q, Larkin P, Xin Z (2004) Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor Appl Genet 109:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li X, Jiang G, Xu Y, He Y (2006) Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed 125(6):600–605

    Article  CAS  Google Scholar 

  • Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q (2003) Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet 106:326–331

    Article  CAS  PubMed  Google Scholar 

Further Readings

  • Anthony VM, Ferroni M (2012) Agricultural biotechnology and smallholder farmers in developing countries. Curr Opin Biotechnol 23:278–285

    Article  CAS  PubMed  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Brumlop S, Finckh MR (2010) Applications and potentials of marker assisted selection (MAS) in plant breeding. Final report of the F + E project “Applications and potentials of smart breeding” (FKZ 350 889 0020) On behalf of the Federal Agency for Nature Conservation, December. http://www.bfn.de/0502_skripten.html

  • Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Oladosu Y, Okporie E et al (2019) Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.). Biotechnol Biotechnol Equip:1–16

    Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136:303–310

    Article  PubMed  Google Scholar 

  • Ribaut JM, Hoisington D (1998) Marker assisted selection: new tools and strategies. Trends Plant Sci 3(6):236–239

    Article  Google Scholar 

  • Zong G, Wang A, Wang L, Liang G, Gu M, Sang T, Han B (2012) A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.). J Genet Genomics 39(7):335–350

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Critical Thinking Questions

Critical Thinking Questions

  1. 1.

    Why do the success of MAS has not been effectively shown in crop plants for genetic improvement of quantitative traits such as drought tolerance?

  2. 2.

    What prevents the applications of MAS in orphan or underutilized crops?

  3. 3.

    What parameters are to be considered while designing a MAS program in a developing country?

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boopathi, N.M. (2020). Success Stories in MAS. In: Genetic Mapping and Marker Assisted Selection. Springer, Singapore. https://doi.org/10.1007/978-981-15-2949-8_10

Download citation

Publish with us

Policies and ethics