Skip to main content

Brain-Machine Interfaces for Closed-Loop Electrical Brain Stimulation in Neuropsychiatric Disorders

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Neuropsychiatric disorders are a leading cause of disability worldwide. Precisely tailored electrical stimulation of the brain holds promise for developing novel treatments for these disorders. Recently, brain-machine interface (BMI) frameworks have been proposed for building closed-loop stimulation systems that would intelligently tailor the electrical stimulation to relieve symptoms. However, to realize such BMIs for neuropsychiatric disorders in the future, at least two critical components are needed: first, a neural decoder that can process brain signals in real time and estimate the current symptom state and second, a model of how electrical stimulation affects the brain signals. In this chapter, we review recent progress toward developing these components. First, new methods have been developed for modeling the encoding of human mood variations in brain signals. These models have enabled successful decoding of mood variations from intracranial human brain activity and revealed brain regions and spectro-spatial neural features that are mood-predictive. Second, new methods and stimulation waveforms have been developed for modeling how electrical stimulation affects brain signals. These components can help pave the way for developing closed-loop BMIs that enable precisely tailored electrical brain stimulation and serve as novel therapies for intractable neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. World Health Organization: The World Health Report 2001: Mental Health: New Understanding, New Hope. World Health Organization, Geneva (2001)

    Google Scholar 

  2. Whiteford, H.A., Degenhardt, L., Rehm, J., Baxter, A.J., Ferrari, A.J., Erskine, H.E., Charlson, F.J., Norman, R.E., Flaxman, A.D., Johns, N., Burstein, R., Murray, C.J., Vos, T.: Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 382(9904), 1575–1586 (2013)

    Article  Google Scholar 

  3. Lépine, J.-P., Briley, M.: The increasing burden of depression. Neuropsychiatr. Dis. Treat. 7(Suppl 1), 3–7 (2011)

    Google Scholar 

  4. Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Nierenberg, A.A., Stewart, J.W., Warden, D., Niederehe, G., Thase, M.E., Lavori, P.W., Lebowitz, B.D., McGrath, P.J., Rosenbaum, J.F., Sackeim, H.A., Kupfer, D.J., Luther, J., Fava, M.: Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatr. 163(11), 1905–1917 (2006)

    Article  Google Scholar 

  5. Filkowski, M.M., Sheth, S.A.: Deep brain stimulation for depression: an emerging indication. Neurosurg. Clin. N. Am. 30(2), 243–256 (2019)

    Article  Google Scholar 

  6. Deuschl, G., Agid, Y.: Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: balancing the risks and benefits. Lancet Neurol. 12(10), 1025–1034 (2013)

    Article  Google Scholar 

  7. Fisher, R., Salanova, V., Witt, T., Worth, R., Henry, T., Gross, R., Oommen, K., Osorio, I., Nazzaro, J., Labar, D., Kaplitt, M., Sperling, M., Sandok, E., Neal, J., Handforth, A., Stern, J., DeSalles, A., Chung, S., Shetter, A., Bergen, D., Bakay, R., Henderson, J., French, J., Baltuch, G., Rosenfeld, W., Youkilis, A., Marks, W., Garcia, P., Barbaro, N., Fountain, N., Bazil, C., Goodman, R., McKhann, G., Krishnamurthy, K.B., Papavassiliou, S., Epstein, C., Pollard, J., Tonder, L., Grebin, J., Coffey, R., Graves, N.: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 51(5), 899–908 (2010)

    Article  Google Scholar 

  8. Hamani, C., Schwalb, J.M., Rezai, A.R., Dostrovsky, J.O., Davis, K.D., Lozano, A.M.: Deep brain stimulation for chronic neuropathic pain: long-term outcome and the incidence of insertional effect. Pain. 125(1), 188–196 (2006)

    Article  Google Scholar 

  9. Boccard, S.G.J., Pereira, E.A.C., Aziz, T.Z.: Deep brain stimulation for chronic pain. J. Clin. Neurosci. 22(10), 1537–1543 (2015)

    Article  Google Scholar 

  10. de Koning, P.P., Figee, M., van den Munckhof, P., Schuurman, P.R., Denys, D.: Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets. Curr. Psychiatry Rep. 13(4), 274–282 (2011)

    Article  Google Scholar 

  11. Koek, R.J., Langevin, J.-P., Krahl, S.E., Kosoyan, H.J., Schwartz, H.N., Chen, J.W., Melrose, R., Mandelkern, M.J., Sultzer, D.: Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation. Trials. 15, 356 (2014)

    Article  Google Scholar 

  12. Luigjes, J., van den Brink, W., Feenstra, M., van den Munckhof, P., Schuurman, P.R., Schippers, R., Mazaheri, A., De Vries, T.J., Denys, D.: Deep brain stimulation in addiction: a review of potential brain targets. Mol. Psychiatry. 17(6), 572–583 (2012)

    Article  Google Scholar 

  13. Mayberg, H.S., Lozano, A.M., Voon, V., McNeely, H.E., Seminowicz, D., Hamani, C., Schwalb, J.M., Kennedy, S.H.: Deep brain stimulation for treatment-resistant depression. Neuron. 45(5), 651–660 (2005)

    Article  Google Scholar 

  14. Lozano, A.M., Mayberg, H.S., Giacobbe, P., Hamani, C., Craddock, R.C., Kennedy, S.H.: Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry. 64(6), 461–467 (2008)

    Article  Google Scholar 

  15. Holtzheimer, P.E., Husain, M.M., Lisanby, S.H., Taylor, S.F., Whitworth, L.A., McClintock, S., Slavin, K.V., Berman, J., McKhann, G.M., Patil, P.G., Rittberg, B.R., Abosch, A., Pandurangi, A.K., Holloway, K.L., Lam, R.W., Honey, C.R., Neimat, J.S., Henderson, J.M., DeBattista, C., Rothschild, A.J., Pilitsis, J.G., Espinoza, R.T., Petrides, G., Mogilner, A.Y., Matthews, K., Peichel, D., Gross, R.E., Hamani, C., Lozano, A.M., Mayberg, H.S.: Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 4(11), 839–849 (2017)

    Article  Google Scholar 

  16. Dandekar, M.P., Fenoy, A.J., Carvalho, A.F., Soares, J.C., Quevedo, J.: Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol. Psychiatry. 23(5), 1094–1112 (2018)

    Article  Google Scholar 

  17. Schlaepfer, T.E., Cohen, M.X., Frick, C., Kosel, M., Brodesser, D., Axmacher, N., Joe, A.Y., Kreft, M., Lenartz, D., Sturm, V.: Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology. 33(2), 368–377 (2008)

    Article  Google Scholar 

  18. Bewernick, B.H., Kayser, S., Sturm, V., Schlaepfer, T.E.: Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology. 37(9), 1975–1985 (2012)

    Article  Google Scholar 

  19. Malone, D.A., Dougherty, D.D., Rezai, A.R., Carpenter, L.L., Friehs, G.M., Eskandar, E.N., Rauch, S.L., Rasmussen, S.A., Machado, A.G., Kubu, C.S., Tyrka, A.R., Price, L.H., Stypulkowski, P.H., Giftakis, J.E., Rise, M.T., Malloy, P.F., Salloway, S.P., Greenberg, B.D.: Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry. 65(4), 267–275 (2009)

    Article  Google Scholar 

  20. Dougherty, D.D., Rezai, A.R., Carpenter, L.L., Howland, R.H., Bhati, M.T., O’Reardon, J.P., Eskandar, E.N., Baltuch, G.H., Machado, A.D., Kondziolka, D., Cusin, C., Evans, K.C., Price, L.H., Jacobs, K., Pandya, M., Denko, T., Tyrka, A.R., Brelje, T., Deckersbach, T., Kubu, C., Malone, D.A.: A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiatry. 78(4), 240–248 (2015)

    Article  Google Scholar 

  21. Schlaepfer, T.E., Bewernick, B.H., Kayser, S., Mädler, B., Coenen, V.A.: Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiatry. 73(12), 1204–1212 (2013)

    Article  Google Scholar 

  22. Fenoy, A.J., Schulz, P., Selvaraj, S., Burrows, C., Spiker, D., Cao, B., Zunta-Soares, G., Gajwani, P., Quevedo, J., Soares, J.: Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J. Affect. Disord. 203, 143–151 (2016)

    Article  Google Scholar 

  23. Blomstedt, P., Naesström, M., Bodlund, O.: Deep brain stimulation in the bed nucleus of the stria terminalis and medial forebrain bundle in a patient with major depressive disorder and anorexia nervosa. Clin. Case Rep. 5(5), 679–684 (2017)

    Article  Google Scholar 

  24. Bergfeld, I.O., Mantione, M., Hoogendoorn, M.L.C., Ruhé, H.G., Horst, F., Notten, P., van Laarhoven, J., van den Munckhof, P., Beute, G., Schuurman, P.R., Denys, D.: Impact of deep brain stimulation of the ventral anterior limb of the internal capsule on cognition in depression. Psychol. Med. 47(9), 1647–1658 (2017)

    Article  Google Scholar 

  25. Bergfeld, I.O., Mantione, M., Hoogendoorn, M.L.C., Ruhé, H.G., Notten, P., van Laarhoven, J., Visser, I., Figee, M., de Kwaasteniet, B.P., Horst, F., Schene, A.H., van den Munckhof, P., Beute, G., Schuurman, R., Denys, D.: Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 73(5), 456–464 (2016)

    Article  Google Scholar 

  26. Morishita, T., Fayad, S.M., Higuchi, M., Nestor, K.A., Foote, K.D.: Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics. 11(3), 475–484 (2014)

    Article  Google Scholar 

  27. Zhou, C., Zhang, H., Qin, Y., Tian, T., Xu, B., Chen, J., Zhou, X., Zeng, L., Fang, L., Qi, X., Lian, B., Wang, H., Hu, Z., Xie, P.: A systematic review and meta-analysis of deep brain stimulation in treatment-resistant depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 82, 224–232 (2018)

    Article  Google Scholar 

  28. Shanechi, M.M.: Brain–machine interfaces from motor to mood. Nat. Neurosci. 22(10), 1554–1564 (2019)

    Article  Google Scholar 

  29. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., Sanislow, C., Wang, P.: Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatr. 167(7), 748–751 (2010)

    Article  Google Scholar 

  30. Widge, A.S., Ellard, K.K., Paulk, A.C., Basu, I., Yousefi, A., Zorowitz, S., Gilmour, A., Afzal, A., Deckersbach, T., Cash, S.S., Kramer, M.A., Eden, U.T., Dougherty, D.D., Eskandar, E.N.: Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach. Exp. Neurol. 287, 461–472 (2017)

    Article  Google Scholar 

  31. Provenza, N.R., Matteson, E.R., Allawala, A.B., Barrios-Anderson, A., Sheth, S.A., Viswanathan, A., McIngvale, E., Storch, E.A., Frank, M.J., McLaughlin, N.C.R., Cohn, J.F., Goodman, W.K., Borton, D.A.: The case for adaptive neuromodulation to treat severe intractable mental disorders. Front. Neurosci. 13, 152 (2019)

    Article  Google Scholar 

  32. Sani, O.G., Yang, Y., Lee, M.B., Dawes, H.E., Chang, E.F., Shanechi, M.M.: Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954 (2018)

    Article  Google Scholar 

  33. Yang, Y., Connolly, A.T., Shanechi, M.M.: A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation. J. Neural Eng. 15(6), 066007 (2018)

    Article  Google Scholar 

  34. Beuter, A., Lefaucheur, J.-P., Modolo, J.: Closed-loop cortical neuromodulation in Parkinson’s disease: an alternative to deep brain stimulation? Clin. Neurophysiol. 125(5), 874–885 (2014)

    Article  Google Scholar 

  35. Moxon, K.A., Foffani, G.: Brain–machine interfaces beyond neuroprosthetics. Neuron. 86(1), 55–67 (2015)

    Article  Google Scholar 

  36. Shirvalkar, P., Veuthey, T.L., Dawes, H.E., Chang, E.F.: Closed-loop deep brain stimulation for refractory chronic pain. Front. Comput. Neurosci. 12, 18 (2018)

    Article  Google Scholar 

  37. Widge, A.S., Malone, D.A.J., Dougherty, D.D.: Closing the loop on deep brain stimulation for treatment-resistant depression. Front. Neurosci. 12, 175 (2018)

    Article  Google Scholar 

  38. Yang, Y., Qiao, S., Sani, O.G., Sedillo, I., Ferrentino, B., Pesaran, B., Shanechi, M.M.: Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat. Biomed. Eng. 5, 324–345 (2021)

    Google Scholar 

  39. Drevets, W.C.: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11(2), 240–249 (2001)

    Article  Google Scholar 

  40. Mayberg, H.S.: Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 65(1), 193–207 (2003)

    Article  Google Scholar 

  41. Ebmeier, K.P., Donaghey, C., Steele, J.D.: Recent developments and current controversies in depression. Lancet. 367(9505), 153–167 (2006)

    Article  Google Scholar 

  42. Etkin, A., Wager, T.D.: Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry. 164(10), 1476–1488 (2007)

    Article  Google Scholar 

  43. Tracey, I., Bushnell, M.C.: How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J. Pain. 10(11), 1113–1120 (2009)

    Article  Google Scholar 

  44. Goldstein, R.Z., Volkow, N.D.: Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12(11), 652–669 (2011)

    Article  Google Scholar 

  45. Kupfer, D.J., Frank, E., Phillips, M.L.: Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 379(9820), 1045–1055 (2012)

    Article  Google Scholar 

  46. Williams, L.M.: Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress. Anxiety. 34(1), 9–24 (2017)

    Article  Google Scholar 

  47. Clark, L.A., Watson, D.: Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 100(3), 316–336 (1991)

    Article  Google Scholar 

  48. Posner, J., Russell, J.A., Peterson, B.S.: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17(3), 715–734 (2005)

    Article  Google Scholar 

  49. Sartorius, N., Üstün, T.B., Lecrubier, Y., Wittchen, H.-U.: Depression comorbid with anxiety: results from the WHO study on psychological disorders in primary health care. Br. J. Psychiatry. 168(S30), 38–43 (1996)

    Article  Google Scholar 

  50. Rao, V.R., Sellers, K.K., Wallace, D.L., Lee, M.B., Bijanzadeh, M., Sani, O.G., Yang, Y., Shanechi, M.M., Dawes, H.E., Chang, E.F.: Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28(24), 3893–3902.e4 (2018)

    Article  Google Scholar 

  51. Nahum, M., Vleet, T.M.V., Sohal, V.S., Mirzabekov, J.J., Rao, V.R., Wallace, D.L., Lee, M.B., Dawes, H., Stark-Inbar, A., Jordan, J.T., Biagianti, B., Merzenich, M., Chang, E.F.: Immediate mood scaler: tracking symptoms of depression and anxiety using a novel mobile mood scale. JMIR Mhealth Uhealth. 5(4), e44 (2017)

    Article  Google Scholar 

  52. Shenoy, K.V., Carmena, J.M.: Combining decoder design and neural adaptation in brain–machine interfaces. Neuron. 84(4), 665–680 (2014)

    Article  Google Scholar 

  53. Shanechi, M.M.: Brain–machine interface control algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1725–1734 (2017)

    Article  Google Scholar 

  54. Mayberg, H.S.: Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 9(3), 471–481 (1997)

    Article  Google Scholar 

  55. Mayberg, H.S., Liotti, M., Brannan, S.K., McGinnis, S., Mahurin, R.K., Jerabek, P.A., Silva, J.A., Tekell, J.L., Martin, C.C., Lancaster, J.L., Fox, P.T.: Reciprocal limbic-cortical function and negative mood: converging pet findings in depression and normal sadness. Am. J. Psychiatr. 156(5), 675–682 (1999)

    Google Scholar 

  56. Dmochowski, J.P., Sajda, P., Dias, J., Parra, L.C.: Correlated components of ongoing EEG point to emotionally laden attention – a possible marker of engagement? Front. Hum. Neurosci. 6, 112 (2012)

    Article  Google Scholar 

  57. Zeng, L.-L., Shen, H., Liu, L., Wang, L., Li, B., Fang, P., Zhou, Z., Li, Y., Hu, D.: Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain. 135(5), 1498–1507 (2012)

    Article  Google Scholar 

  58. Calhoon, G.G., Tye, K.M.: Resolving the neural circuits of anxiety. Nat. Neurosci. 18(10), 1394–1404 (2015)

    Article  Google Scholar 

  59. Kragel, P.A., Knodt, A.R., Hariri, A.R., LaBar, K.S.: Decoding spontaneous emotional states in the human brain. PLoS Biol. 14(9), e2000106 (2016)

    Article  Google Scholar 

  60. Dan, R., Růžička, F., Bezdicek, O., Růžička, E., Roth, J., Vymazal, J., Goelman, G., Jech, R.: Separate neural representations of depression, anxiety and apathy in Parkinson’s disease. Sci. Rep. 7(1), 12164 (2017)

    Article  Google Scholar 

  61. Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R.N., Zebley, B., Oathes, D.J., Etkin, A., Schatzberg, A.F., Sudheimer, K., Keller, J., Mayberg, H.S., Gunning, F.M., Alexopoulos, G.S., Fox, M.D., Pascual-Leone, A., Voss, H.U., Casey, B., Dubin, M.J., Liston, C.: Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23(1), 28–38 (2017)

    Article  Google Scholar 

  62. Schieber, M.H.: Constraints on somatotopic organization in the primary motor cortex. J. Neurophysiol. 86(5), 2125–2143 (2001)

    Article  Google Scholar 

  63. Watson, D., Clark, L.A.: Measurement and mismeasurement of mood: recurrent and emergent issues. J. Pers. Assess. 68(2), 267–296 (1997)

    Article  Google Scholar 

  64. Ekkekakis, P.: The Measurement of Affect, Mood, and Emotion: A Guide for Health-Behavioral Research. Cambridge University Press, New York (2013)

    Book  Google Scholar 

  65. Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  66. Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems. Springer, Boston (1996)

    Book  MATH  Google Scholar 

  67. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning Springer Series in Statistics, vol. 1. Springer, Berlin (2001)

    MATH  Google Scholar 

  68. Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Chapman & Hall, New York (1982)

    MATH  Google Scholar 

  69. Montgomery, D.C., Peck, E.A., Vining, G.G.: Introduction to Linear Regression Analysis. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  70. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Goualher, G.L., Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B.: A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356(1412), 1293 (2001)

    Article  Google Scholar 

  71. Liu, J., Khalil, H.K., Oweiss, K.G.: Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. J. Neural Eng. 8(4), 045002 (2011)

    Article  Google Scholar 

  72. Santaniello, S., Fiengo, G., Glielmo, L., Grill, W.M.: Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19(1), 15–24 (2011)

    Article  Google Scholar 

  73. Ehrens, D., Sritharan, D., Sarma, S.V.: Closed-loop control of a fragile network: application to seizure-like dynamics of an epilepsy model. Front. Neurosci. 9, 58 (2015)

    Article  Google Scholar 

  74. Montgomery, E.B., Baker, K.B.: Mechanisms of deep brain stimulation and future technical developments. Neurol. Res. 22(3), 259–266 (2000)

    Article  Google Scholar 

  75. Franaszczuk, P.J., Kudela, P., Bergey, G.K.: External excitatory stimuli can terminate bursting in neural network models. Epilepsy Res. 53(1), 65–80 (2003)

    Article  Google Scholar 

  76. Rubin, J.E., Terman, D.: High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci. 16(3), 211–235 (2004)

    Article  Google Scholar 

  77. Anderson, W.S., Kudela, P., Cho, J., Bergey, G.K., Franaszczuk, P.J.: Studies of stimulus parameters for seizure disruption using neural network simulations. Biol. Cybern. 97(2), 173–194 (2007)

    Article  MATH  Google Scholar 

  78. Feng, X.-J., Shea-Brown, E., Greenwald, B., Kosut, R., Rabitz, H.: Optimal deep brain stimulation of the subthalamic nucleus – a computational study. J. Comput. Neurosci. 23(3), 265 (2007)

    Article  MathSciNet  Google Scholar 

  79. Stefanescu, R.A., Shivakeshavan, R., Talathi, S.S.: Computational models of epilepsy. Seizure. 21(10), 748–759 (2012)

    Article  Google Scholar 

  80. Sritharan, D., Sarma, S.V.: Fragility in dynamic networks: application to neural networks in the epileptic cortex. Neural Comput. 26(10), 2294–2327 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. Santaniello, S., McCarthy, M.M., Montgomery, E.B., Gale, J.T., Kopell, N., Sarma, S.V.: Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc. Natl. Acad. Sci. 112(6), E586–E595 (2015)

    Article  Google Scholar 

  82. Hahn, P.J., McIntyre, C.C.: Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. J. Comput. Neurosci. 28(3), 425–441 (2010)

    Article  Google Scholar 

  83. Garcia, L., D’Alessandro, G., Bioulac, B., Hammond, C.: High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci. 28(4), 209–216 (2005)

    Article  Google Scholar 

  84. Hashimoto, T., Elder, C.M., Vitek, J.L.: A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J. Neurosci. Methods. 113(2), 181–186 (2002)

    Article  Google Scholar 

  85. Wagenaar, D.A., Potter, S.M.: Real-time multi-channel stimulus artifact suppression by local curve fitting. J. Neurosci. Methods. 120(2), 113–120 (2002)

    Article  Google Scholar 

  86. Erez, Y., Tischler, H., Moran, A., Bar-Gad, I.: Generalized framework for stimulus artifact removal. J. Neurosci. Methods. 191(1), 45–59 (2010)

    Article  Google Scholar 

  87. Yang, Y., Sani, O., Chang, E.F., Shanechi, M.M.: Dynamic network modeling and dimensionality reduction for human ECoG activity. J. Neural Eng. 16(5), 056014 (2019)

    Article  Google Scholar 

  88. Tulleken, H.J.A.F.: Generalized binary noise test-signal concept for improved identification-experiment design. Automatica. 26(1), 37–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  89. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, vol. 2. Wiley, New York (2007)

    MATH  Google Scholar 

  90. Yang, Y., Ahmadipour, P., Shanechi, M.M.: An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia. J. Neural Eng. 13(6), 066019 (2016)

    Google Scholar 

  91. Yang, Y., Ahmadipour, P., Shanechi, M. M.: Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization. J. Neural Eng. 18(3), 036013 (2021)

    Google Scholar 

  92. Yang, Y., Lee, J.T., Guidera, J.A., Vlasov, K.Y., Pei, J., Brown, E.N., Solt, K., Shanechi, M.M.: Developing a personalized closed-loop controller of medically-induced coma in a rodent model. J. Neural Eng. 16(3), 036022 (2019)

    Article  Google Scholar 

  93. Ahmadipour, P., Yang, Y., Chang, E. F., Shanechi, M. M.: Adaptive tracking of human ECoG network dynamics. J. Neural Eng. 18(1), 016011 (2021)

    Google Scholar 

  94. Hsieh, H.-L., Shanechi, M.M.: Optimizing the learning rate for adaptive estimation of neural encoding models. PLoS Comput. Biol. 14(5), e1006168 (2018)

    Article  Google Scholar 

  95. Abbaspourazad, H., Hsieh, H., Shanechi, M.M.: A multiscale dynamical modeling and identification framework for spike-field activity. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1128–1138 (2019)

    Article  Google Scholar 

  96. Bighamian, R., Wong, Y.T., Pesaran, B., Shanechi, M.M.: Sparse model-based estimation of functional dependence in high-dimensional field and spike multiscale networks. J. Neural Eng. 16(5), 056022 (2019)

    Article  Google Scholar 

  97. Hsieh, H.-L., Wong, Y.T., Pesaran, B., Shanechi, M.M.: Multiscale modeling and decoding algorithms for spike-field activity. J. Neural Eng. 16(1), 016018 (2019)

    Article  Google Scholar 

  98. Sadras, N., Pesaran, B., Shanechi, M.M.: A point-process matched filter for event detection and decoding from population spike trains. J. Neural Eng. 16(6), 066016 (2019)

    Article  Google Scholar 

  99. Wang, C., Shanechi, M.M.: Estimating multiscale direct causality graphs in neural spike-field networks. IEEE Trans. Neural Syst. Rehabil. Eng. 27(5), 857–866 (2019)

    Article  Google Scholar 

  100. Sani, O.G., Abbaspourazad, H., Wong, Y.T., Pesaran, B., Shanechi, M.M.: Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24(1), 140–149 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam M. Shanechi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sani, O.G., Yang, Y., Shanechi, M.M. (2021). Brain-Machine Interfaces for Closed-Loop Electrical Brain Stimulation in Neuropsychiatric Disorders. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_107-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_107-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics