Skip to main content

Animal Model Contributions to Congenital Metabolic Disease

  • Chapter
  • First Online:
Animal Models of Human Birth Defects

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1236))

Abstract

Genetic model systems allow researchers to probe and decipher aspects of human disease, and animal models of disease are frequently specifically engineered and have been identified serendipitously as well. Animal models are useful for probing the etiology and pathophysiology of disease and are critical for effective discovery and development of novel therapeutics for rare diseases. Here we review the impact of animal model organism research in three examples of congenital metabolic disorders to highlight distinct advantages of model system research. First, we discuss phenylketonuria research where a wide variety of research fields and models came together to make impressive progress and where a nearly ideal mouse model has been central to therapeutic advancements. Second, we review advancements in Lesch-Nyhan syndrome research to illustrate the role of models that do not perfectly recapitulate human disease as well as the need for multiple models of the same disease to fully investigate human disease aspects. Finally, we highlight research on the GM2 gangliosidoses Tay-Sachs and Sandhoff disease to illustrate the important role of both engineered traditional laboratory animal models and serendipitously identified atypical models in congenital metabolic disorder research. We close with perspectives for the future for animal model research in congenital metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BH4:

Tetrahydrobiopterin

CMD:

Congenital metabolic disorder

ENU:

Ethylnitrosurea

ES:

Embryonic stem cell

GM2:

G represents gangliosides, M indicates monosialic, and 2 indicates second monosialic ganglioside discovered

HEXA, HEXA:

Human acetylhexosaminidase α subunit protein and gene, respectively. HEXA also refers to the enzymatic activity of the hexosaminidase α/β dimer

Hexa, Hexa:

Mouse acetylhexosaminidase α subunit protein and gene, respectively

HEXB, HEXB:

Human acetylhexosaminidase β subunit protein and gene, respectively. HEXB also refers to the enzymatic activity of the hexosaminidase β dimers

Hexb, Hexb:

Mouse acetylhexosaminidase β subunit protein and gene, respectively

HEXS:

Refers to the enzymatic activity of the hexosaminidase α dimers

HPRT, HPRT:

Human hypoxanthine-guanine phosphoribosyltransferase protein and gene, respectively

Hprt, Hprt:

Rodent hypoxanthine-guanine phosphoribosyltransferase protein and gene, respectively

IEM:

Inborn error of metabolism

iPS:

Induced pluripotent stem cells

LNS:

Lesch-Nyhan syndrome

PAH, PAH:

Human phenylalanine hydroxylase protein and gene, respectively

Pah, Pah:

Rodent phenylalanine hydroxylase protein and gene, respectively

PAL:

Phenylalanine ammonia lyase

PEG:

Polyethylene glycol

PKU:

Phenylketonuria

SD:

Sandhoff disease

THBD:

Tetrahydrobiopterin deficiency

TSD:

Tay-Sachs disease

References

  1. Harthan AA. An introduction to pharmacotherapy for inborn errors of metabolism. J Pediatr Pharmacol Ther. 2018;23(6):432–46.

    PubMed  PubMed Central  Google Scholar 

  2. Garrod AE. The incidence of alkaptonuria: a study in chemical individuality. 1902. Mol Med. 1996;2(3):274–82. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/8784780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kruszka P, Regier D. Inborn errors of metabolism: transition from childhood to adulthood. Am Fam Physician. 2019;99(1):25–32.

    PubMed  Google Scholar 

  4. Kanungo S, Patel DR, Neelakantan M, Ryali B. Newborn screening and changing face of inborn errors of metabolism in the United States. Ann Transl Med. 2018;6(24):468. AME Publications. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/30740399.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bick D, Jones M, Taylor SL, Taft RJ, Belmont J. Case for genome sequencing in infants and children with rare, undiagnosed or genetic diseases. J Med Genet. 2019. [cited 2019 Sep 13]; jmedgenet-2019-106111. http://www.ncbi.nlm.nih.gov/pubmed/31023718.

  6. Heimer G, Kerätär JM, Riley LG, Balasubramaniam S, Eyal E, Pietikäinen LP, et al. MECR mutations cause childhood-onset dystonia and optic atrophy, a mitochondrial fatty acid synthesis disorder. Am J Hum Genet. 2016;99(6):1229–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wertheim-Tysarowska K, Gos M, Sykut-Cegielska J, Bal J. Genetic analysis in inherited metabolic disorders—from diagnosis to treatment. Own experience, current state of knowledge and perspectives. Dev Period Med. 2019;19(4):413–31. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/26982749.

    Google Scholar 

  8. Ezgu F. Inborn errors of metabolism. In: Advances in clinical chemistry; 2016. p. 195–250. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/26975974

  9. Argmann CA, Houten SM, Zhu J, Schadt EE. A next generation multiscale view of inborn errors of metabolism. Cell Metab. 2016;23(1):13–26. NIH Public Access. [cited 2019 Aug 1]. http://www.ncbi.nlm.nih.gov/pubmed/26712461.

    Article  CAS  PubMed  Google Scholar 

  10. Sirrs S, Hollak C, Merkel M, Sechi A, Glamuzina E, Janssen MC, et al. The frequencies of different inborn errors of metabolism in adult metabolic centres: report from the SSIEM adult metabolic physicians group. In: JIMD reports. Wiley-Blackwell; 2015. p. 85–91. [cited 2019 Sep 15]. http://www.ncbi.nlm.nih.gov/pubmed/26450566.

  11. Bickel H, Gerrard J, Hickmans EM. The influence of phenylalanine intake on the chemistry and behaviour of a phenylketonuria child. Acta Paediatr. 1954;43(1):64–77. John Wiley & Sons, Ltd (10.1111). [cited 2019 Sep 15]. http://doi.wiley.com/10.1111/j.1651-2227.1954.tb04000.x.

    Article  CAS  PubMed  Google Scholar 

  12. Bhattacharya K, Wotton T, Wiley V. The evolution of blood-spot newborn screening. Transl Pediatr. 2014;3(2):63–70. AME Publications. [cited 2019 Sep 15]. http://www.ncbi.nlm.nih.gov/pubmed/26835325.

    PubMed  PubMed Central  Google Scholar 

  13. Burlina AP, Lachmann RH, Manara R, Cazzorla C, Celato A, van Spronsen FJ, et al. The neurological and psychological phenotype of adult patients with early-treated phenylketonuria: a systematic review. J Inherit Metab Dis. 2019;42(2):209–19. John Wiley & Sons, Ltd. [cited 2019 Sep 15]. https://onlinelibrary.wiley.com/doi/abs/10.1002/jimd.12065.

    Article  PubMed  Google Scholar 

  14. Brown CS, Lichter-Konecki U. Phenylketonuria (PKU): a problem solved? Mol Genet Metab Rep. 2016;6:8–12. Elsevier. [cited 2019 Sep 15]. http://www.ncbi.nlm.nih.gov/pubmed/27014571.

    Article  PubMed  Google Scholar 

  15. Williams RA, Mamotte CDS, Burnett JR. Phenylketonuria: an inborn error of phenylalanine metabolism. Clin Biochem. 2008;49:31–41.

    Google Scholar 

  16. Centerwall SA, Centerwall WR. The discovery of phenylketonuria: the story of a young couple, two retarded children, and a scientist. Pediatrics. 2000;105(1):89–103.

    Article  CAS  PubMed  Google Scholar 

  17. Blau N. Genetics of phenylketonuria: then and now. Hum Mutat. 2016;37(6):508–15.

    Article  CAS  PubMed  Google Scholar 

  18. Christ SE. Asbjørn Følling and the discovery of phenylketonuria. J Hist Neurosci. 2003;12(1):44–54. [cited 2019 Sep 7]. http://www.ncbi.nlm.nih.gov/pubmed/12785112.

    Article  PubMed  Google Scholar 

  19. Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genet Med. 2011;13(8):697–707. Nature Publishing Group. [cited 2019 Sep 7]. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00125817-201108000-00002.

    Article  CAS  PubMed  Google Scholar 

  20. Nova MP, Kaufman M, Halperin A. Scleroderma-like skin indurations in a child with phenylketonuria: a clinicopathologic correlation and review of the literature. J Am Acad Dermatol. 1992;26(2):329–33. Mosby. [cited 2019 Sep 15]. https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/019096229270048K?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  21. Van Vliet D, Van Wegberg AMJ, Ahring K, Bik-Multanowski M, Blau N, Bulut FD, et al. Can untreated PKU patients escape from intellectual disability? A systematic review. Orphanet J Rare Dis. 2018;13(1):1–6.

    Article  Google Scholar 

  22. Van Vliet D, Bruinenberg VM, Mazzola PN, Van Faassen MHJR, De Blaauw P, Pascucci T, et al. Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. Am J Clin Nutr. 2016;104(5):1292–300.

    Article  PubMed  CAS  Google Scholar 

  23. Pietz J. Neurological aspects of adult phenylketonuria. Curr Opin Neurol. 1998;11(6):679–88.

    Article  CAS  PubMed  Google Scholar 

  24. Anderson PJ, Wood SJ, Francis DE, Coleman L, Anderson V, Boneh A. Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Dev Neuropsychol. 2007;32(2):645–68.

    Article  PubMed  Google Scholar 

  25. Krishnamoorthy U, Dickson M. Maternal phenylketonuria in pregnancy. Obstet Gynaecol. 2005;7(1):28–33.

    Google Scholar 

  26. Lenke RR, Levy HL. Maternal phenylketonuria and hyperphenylalaninemia. N Engl J Med. 1980;303(21):1202–8.

    Article  CAS  PubMed  Google Scholar 

  27. Woo SLC, Lidsky AS, Güttler F, Chandra T, Robson KJH. Cloned human phenylalanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature. 1983;306:151–5.

    Article  CAS  PubMed  Google Scholar 

  28. Kwok SCM, Ledley FD, DiLella AG, Robson KJH, Woo SLC. Nucleotide sequence of a full-length complementary DNA clone and amino acid sequence of human phenylalanine hydroxylase. Biochemistry. 1985;24(3):556–61.

    Article  CAS  PubMed  Google Scholar 

  29. Romani C, Palermo L, MacDonald A, Limback E, Hall SK, Geberhiwot T. The impact of phenylalanine levels on cognitive outcomes in adults with phenylketonuria: effects across tasks and developmental stages. Neuropsychology. 2017;31(3):242–54.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shi Z, Sellers J, Moult J. Protein stability and in vivo concentration of missense mutations in phenylalanine hydroxylase. Proteins. 2012;80(1):61–70. NIH Public Access. [cited 2019 Sep 11]. http://www.ncbi.nlm.nih.gov/pubmed/21953985.

    Article  CAS  PubMed  Google Scholar 

  31. Gersting SW, Kemter KF, Staudigl M, Messing DD, Danecka MK, Lagler FB, et al. Loss of function in phenylketonuria is caused by impaired molecular motions and conformational instability. Am J Hum Genet. 2008;83(1):5–17. Cell Press. [cited 2019 Sep 11]. https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/S0002929708003224?via%3Dihub.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shedlovsky A, McDonald JD, Symula D, Dove WF. Mouse models of human phenylketonuria. Genetics. 1993;134(4):1205–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mcdonald JDD, Bode VC, Dove WFF, Shedlovsky A, Vernon C, Dove WFF, et al. Pahhph-5: a mouse mutant deficient in phenylalanine hydroxylase. Proc Natl Acad Sci U S A. 1990;87(5):1965–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haefele MJ, White G, McDonald JD. Characterization of the mouse phenylalanine hydroxylase mutation Pahenu3. Mol Genet Metab. 2001;72(1):27–30. Academic Press. [cited 2019 Sep 11]. https://www.sciencedirect.com/science/article/pii/S1096719200931044?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  35. McDonald JD, Charlton CK. Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. 1997;39(3):402–5.

    Article  CAS  PubMed  Google Scholar 

  36. Blau N, Thöny B, Heizmann CW, Dhondtt JL. Tetrahydrobiopterin deficiency: from phenotype to genotype. Pteridines. 1993;4(1):1–10.

    Article  CAS  Google Scholar 

  37. Fitzpatrick PF. Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys. 2012;519(2):194–201.

    Article  CAS  PubMed  Google Scholar 

  38. Muntau AC, Roschinger W, Habich M, Demmelmair H, Hoffmann B, Sommerhoff CP, et al. Tetrahydrobiopterin as an Alternative Treatment for Mild Phenylketonuria. N Engl J Med. 2002;347(26):2122–32.

    Google Scholar 

  39. Gersting SW, Lagler FB, Eichinger A, Kemter KF, Danecka MK, Messing DD, et al. Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo. Hum Mol Genet. 2010;19(10):2039–49. Narnia. [cited 2019 Sep 11]. https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddq085.

    Article  CAS  PubMed  Google Scholar 

  40. Cederbaum S. Tetrahydrobiopterin and PKU: into the future. J Pediatr. 2011;158(3):351–3. Mosby, Inc.

    Article  PubMed  Google Scholar 

  41. Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants. J Biol Chem. 1961;236(10):2692–8.

    CAS  PubMed  Google Scholar 

  42. Levy HL, Sarkissian CN, Scriver CR. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol Genet Metab. 2018;124(4):223–9. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/29941359.

    Article  CAS  PubMed  Google Scholar 

  43. Hoskins JA, Jack G, Wade HE, Peiris RJD, Wright EC, Starr DJT, et al. Enzymatic control of phenylalanine intake in phenylketonuria. Lancet. 1980;1(8165):392–4.

    Article  CAS  PubMed  Google Scholar 

  44. Taipa MÂ, Fernandes P, de Carvalho CCCR. Production and purification of therapeutic enzymes. In: Advances in experimental medicine and biology. 2019. p. 1–24. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/31482492.

  45. Sarkissian CN, Gamez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt JF, et al. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci U S A. 2008;105(52):20894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahan KC, Gandhi MA, Anand S. Pegvaliase: a novel treatment option for adults with phenylketonuria. Curr Med Res Opin. 2019;35(4):647–51.

    Article  CAS  PubMed  Google Scholar 

  47. McDonald JD, Dyer CA, Gailis L, Kirby ML. Cardiovascular defects among the progeny of mouse phenylketonuria females. Pediatr Res. 1997;42(1):103–7. [cited 2019 Sep 11]. http://www.ncbi.nlm.nih.gov/pubmed/9212044.

    Article  CAS  PubMed  Google Scholar 

  48. Watson JN, Seagraves NJ. RNA-Seq analysis in an avian model of maternal phenylketonuria. Mol Genet Metab. 2019;126(1):23–9. Academic Press. [cited 2019 Sep 1]. https://www.sciencedirect.com/science/article/pii/S1096719218302567?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  49. Brass CA, Isaacs CE, McChesney R, Greencard O. The effects of hyperphenylalaninemia on fetal development: a new animal model of maternal phenylketonuria. Pediatr Res. 1982;16(5):388–94.

    Article  CAS  PubMed  Google Scholar 

  50. Kerr GR, Chamove AS, Harlow HF, Waisman HA. “Fetal PKU:” the effect of maternal hyperphenylalaninemia during pregnancy in the rhesus monkey (Macaca Mulatta). Pediatrics. 1968;42(1):27–36.

    CAS  PubMed  Google Scholar 

  51. Matalon R, Surendran S, McDonald JDD, Okorodudu AOO, Tyring SKK, Michals-Matalon K, et al. Abnormal expression of genes associated with development and inflammation in the heart of mouse maternal phenylketonuria offspring. Int J Immunopathol Pharmacol. 2005;18(3):557–65. London: SAGE Publications. [cited 2019 Sep 11]. http://journals.sagepub.com/doi/10.1177/039463200501800316.

    Article  CAS  PubMed  Google Scholar 

  52. Le Barz M, Anhê FF, Varin TV, Desjardins Y, Levy E, Roy D, et al. Probiotics as complementary treatment for metabolic disorders. Diabetes Metab J. 2015;39(4):291–303. Korean Diabetes Association. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/26301190.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sarkissian CNN, Shao Z, Blain F, Peevers R, Su H, Heft R, et al. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci U S A. 1999;96(5):2339–44. [cited 2019 Sep 7]. http://www.ncbi.nlm.nih.gov/pubmed/10051643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the treatment of phenylketonuria (PKU); assessment of a novel treatment in vitro and in the PAHenu2 mouse model of PKU. PLoS One. 2017;12(5):e0176286. Wilson BA, editor. [cited 2019 Sep 11]. http://www.ncbi.nlm.nih.gov/pubmed/28520731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Crook N, Ferreiro A, Gasparrini AJ, Pesesky MW, Gibson MK, Wang B, et al. Adaptive strategies of the candidate probiotic E. coli Nissle in the mammalian gut. Cell Host Microbe. 2019;25(4):499–512. Elsevier Inc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Isabella VM, Ha BN, Castillo MJ, Lubkowicz DJ, Rowe SE, Millet YA, et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol. 2018;36(9):857–64. Nature Publishing Group. [cited 2019 Sep 10]. http://www.nature.com/articles/nbt.4222.

    Article  CAS  PubMed  Google Scholar 

  57. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of T to G C in genomic DNA without DNA cleavage. Nature. 2017;551(7681):464–71. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420–4. Nature Publishing Group. [cited 2019 Sep 11]. http://www.nature.com/articles/nature17946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med. 2018;24(10):1519–25. Nature Publishing Group. [cited 2019 Sep 11]. http://www.nature.com/articles/s41591-018-0209-1.

    Article  CAS  PubMed  Google Scholar 

  60. Lesch M, Nyhan WL. A familial disorder of uric acid metabolism and central nervous system function. Am J Med. 1964;36(4):561–70. Elsevier. [cited 2019 Sep 2]. https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/0002934364901044?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  61. Seegmiller JE, Rosenbloom FM, Kelley WN. Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science. 1967;155(3770):1682–4. American Association for the Advancement of Science. [cited 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/6020292.

    Article  CAS  PubMed  Google Scholar 

  62. Jolly DJ, Okayama H, Berg P, Esty AC, Filpula D, Bohlen P, et al. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyl transferase. Proc Natl Acad Sci U S A. 1983;80(2):477–81. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/6300847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nyhan WL. Lesch-Nyhan disease. J Hist Neurosci. 2005;14:1–10.

    Article  PubMed  Google Scholar 

  64. Crawhall JC, Henderson JF, Kelley WN. Diagnosis and treatment of the Lesch-Nyhan syndrome. Pediatr Res. 1972;6(5):504–13. [cited 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/4558815.

    Article  CAS  PubMed  Google Scholar 

  65. Zizzo MG, Frinchi M, Nuzzo D, Jinnah HA, Mudò G, Condorelli DF, et al. Altered gastrointestinal motility in an animal model of Lesch-Nyhan disease. Auton Neurosci. 2018;210:55–64. Elsevier. [cited 2019 Sep 2]. https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/S1566070217302692?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  66. Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007;2(1):48. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/18067674.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jinnah HA. Lesch-Nyhan disease: from mechanism to model and back again. Dis Model Mech. 2009;2(3–4):116–21. [cited 2019 Sep 10]. http://dmm.biologists.org/cgi/doi/10.1242/dmm.002543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu R, Sutcliffe D, Zhao H, Huang X, Schretlen DJ, Benkovic S, et al. Clinical severity in Lesch–Nyhan disease: the role of residual enzyme and compensatory pathways. Mol Genet Metab. 2015;114(1):55–61. Academic Press. [cited 2019 Sep 10]. https://www.sciencedirect.com/science/article/pii/S1096719214003461?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  69. Bell S, Kolobova I, Crapper L, Ernst C. Lesch-Nyhan syndrome: models, theories, and therapies. Mol Syndromol. 2016;7(6):302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lloyd KG, Hornykiewicz O, Davidson L, Shannak K, Farley I, Goldstein M, et al. Biochemical Evidence of Dysfunction of Brain Neurotransmitters in the Lesch-Nyhan Syndrome. N Engl J Med. 1981;305(19):1106–11

    Google Scholar 

  71. Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Hardy K, et al. Presynaptic dopaminergic deficits in Lesch–Nyhan disease. N Engl J Med. 1996;334(24):1568–72. Massachusetts Medical Society. [cited 2019 Sep 10]. http://www.nejm.org/doi/abs/10.1056/NEJM199606133342403.

    Article  CAS  PubMed  Google Scholar 

  72. Wong DF, Harris JC, Naidu S, Yokoi F, Marenco S, Dannals RF, et al. Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc Natl Acad Sci U S A. 1996;93(11):5539–43. National Academy of Sciences. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/8643611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roach ES, Delgado M, Anderson L, Iannaccone ST, Bums DK. Carbamazepine trial for Lesch-Nyhan self-mutilation. J Child Neurol. 1996;11(6):476–8. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/9120227.

    Article  CAS  PubMed  Google Scholar 

  74. Pozzi M, Piccinini L, Gallo M, Motta F, Radice S, Clementi E. Treatment of motor and behavioural symptoms in three Lesch-Nyhan patients with intrathecal baclofen. Orphanet J Rare Dis. 2014;9(1):208. [cited 2019 Sep 16]. http://ojrd.biomedcentral.com/articles/10.1186/s13023-014-0208-3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goodman EM, Torres RJ, Puig JG, Jinnah HA. Consequences of delayed dental extraction in Lesch-Nyhan disease. Mov Disord Clin Pract. 2014;1(3):225–9. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/25419535.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jinnah HA, De Gregorio L, Harris JC, Nyhan WL, O’Neill JP. The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases. Mutat Res. 2000;463(3):309–26. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/11018746.

    Article  CAS  PubMed  Google Scholar 

  77. Zoref-Shani E, Bromberg Y, Brosh S, Sidi Y, Sperling O. Characterization of the alterations in purine nucleotide metabolism in hypoxanthine-guardne phosphoribosyltransferase-deficient rat neuroma cell line. J Neurochem. 2006;61(2):457–63. John Wiley & Sons, Ltd (10.1111). [cited 2019 Sep 2]. http://doi.wiley.com/10.1111/j.1471-4159.1993.tb02146.x.

    Article  Google Scholar 

  78. Shirley TL, Lewers JC, Egami K, Majumdar A, Kelly M, Ceballos-Picot I, et al. A human neuronal tissue culture model for Lesch-Nyhan disease. J Neurochem. 2007;101(3):841–53. [cited 2015 Jun 14]. http://www.ncbi.nlm.nih.gov/pubmed/17448149.

    Article  CAS  PubMed  Google Scholar 

  79. Kang TH, Guibinga G-H, Jinnah HA, Friedmann T. HPRT deficiency coordinately dysregulates canonical Wnt and presenilin-1 signaling: a neuro-developmental regulatory role for a housekeeping gene? PLoS One. 2011;6(1):e16572. Public Library of Science. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/21305049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ceballos-Picot I, Mockel L, Potier M-C, Dauphinot L, Shirley TL, Torero-Ibad R, et al. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet. 2009;18(13):2317–27. Oxford University Press. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/19342420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guibinga G-H, Hrustanovic G, Bouic K, Jinnah HA, Friedmann T. MicroRNA-mediated dysregulation of neural developmental genes in HPRT deficiency: clues for Lesch-Nyhan disease? Hum Mol Genet. 2012;21(3):609–22. Oxford University Press. [cited 2019 Sep 10]. http://www.ncbi.nlm.nih.gov/pubmed/22042773.

    Article  CAS  PubMed  Google Scholar 

  82. Wade-Martins R, White RE, Kimura H, Cook PR, James MR. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol. 2000;18(12):1311–4. [cited 2019 Sep 2]. http://www.nature.com/articles/nbt1200_1311.

    Article  CAS  PubMed  Google Scholar 

  83. Hooper M, Hardy K, Handyside A, Hunter S, Monk M. HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987;326(6110):292–5. [cited 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/3821905.

    Article  CAS  PubMed  Google Scholar 

  84. Kuehn MR, Bradley A, Robertson EJ, Evans MJ. A potential animal model for Lesch–Nyhan syndrome through introduction of HPRT mutations into mice. Nature. 1987;326(6110):295–8. [cited 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/3029599.

    Article  CAS  PubMed  Google Scholar 

  85. Jinnah HA, Page T, Friedmann T. Brain purines in a genetic mouse model of Lesch-Nyhan disease. J Neurochem. 1993;60(6):2036–45.

    Article  CAS  PubMed  Google Scholar 

  86. Jinnah HA, Wojcik BE, Hunt M, Narang N, Lee KY, Goldstein M, et al. Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J Neurosci. 1994;14(3):1164–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Finger S, Heavens RP, Sirinathsinghji DJS, Kuehn MR, Dunnett SB. Behavioral and neurochemical evaluation of a transgenic mouse model of Lesch-Nyhan syndrome. J Neurol Sci. 1988;86:203–13.

    Article  CAS  PubMed  Google Scholar 

  88. Wu C-L, Melton DW. Production of a model for Lesch–Nyhan syndrome in hypoxanthine phosphoribosyltransferase–deficient mice. Nat Genet. 1993;3(3):235–40. Nature Publishing Group. [cited 2019 Sep 4]. http://www.nature.com/articles/ng0393-235.

    Article  CAS  PubMed  Google Scholar 

  89. Edamura K, Sasai H. No self-injurious behavior was found in HPRT-deficient mice treated with 9-ethyladenine. Pharmacol Biochem Behav. 1998;61(2):175–9. Elsevier. [cited 2019 Sep 4]. https://www.sciencedirect.com/science/article/pii/S0091305798000951?via%3Dihub#BIB18.

    Article  CAS  PubMed  Google Scholar 

  90. Engle S, Womer DE, Davies PM, Boivin G, Sahota A, Simmonds HA, et al. HPRT-APRT-deficient mice are not a model for Lesch-Nyhan syndrome. Hum Mol Genet. 1996;5(10):1607–10. Narnia. [cited 2019 Sep 4]. https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/5.10.1607.

    Article  CAS  PubMed  Google Scholar 

  91. Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9(10):1079–87. Company of Biologists. [cited 2019 Sep 11]. http://www.ncbi.nlm.nih.gov/pubmed/27736744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Breese GR, Traylor TD. Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: effects of 6-hydroxydopamine. Br J Pharmacol. 1972;44(2):210–22. John Wiley & Sons, Ltd (10.1111). [cited 2019 Sep 10]. http://doi.wiley.com/10.1111/j.1476-5381.1972.tb07257.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Breese GR, Baumeister AA, McCown TJ, Emerick SG, Frye GD, Mueller RA. Neonatal-6-hydroxydopamine treatment: model of susceptibility for self-mutilation in the Lesch-Nyhan syndrome. Pharmacol Biochem Behav. 1984;21(3):459–61. Elsevier. [cited 2019 Sep 10]. https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/S0091305784801100.

    Article  CAS  PubMed  Google Scholar 

  94. Knapp DJ, Breese GR. The use of perinatal 6-hydroxydopamine to produce a rodent model of Lesch–Nyhan disease. In: Current topics in behavioral neurosciences; 2016. p. 265–77. [cited 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/27029809.

  95. Meek S, Thomson AJ, Sutherland L, Sharp MGF, Thomson J, Bishop V, et al. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan disease. Sci Rep. 2016;6:25592. Nature Publishing Group. [cited 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/27185277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Visser JE, Harris JC, Barabas G, Eddey GE, Jinnah HA. The motor disorder of classic Lesch-Nyhan disease. Nucleosides Nucleotides Nucleic Acids. 2004;23(8–9):1161–4. [cited 2019 Sep 10]. http://www.tandfonline.com/doi/abs/10.1081/NCN-200027432.

    Article  CAS  PubMed  Google Scholar 

  97. Mastrangelo L, Kim J-E, Miyanohara A, Kang TH, Friedmann T. Purinergic signaling in human pluripotent stem cells is regulated by the housekeeping gene encoding hypoxanthine guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A. 2012;109(9):3377–82. [cited 2019 Sep 10]. http://www.pnas.org/cgi/doi/10.1073/pnas.1118067109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kang TH, Park Y, Bader JS, Friedmann T. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation. PLoS One. 2013;8(10):e74967. Cooney AJ, editor. Public Library of Science. [cited 2019 Sep 10]. https://dx.plos.org/10.1371/journal.pone.0074967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tay W. Symmetrical changes in the region of the yellow spot in each eye of an infant. Arch Neurol. 1969;20(1):104–5.

    Article  Google Scholar 

  100. Sachs B. Arrested cerebral development with special reference to its cortical pathology. J Nerv Ment Dis. 1887;14(9):541–3.

    Article  Google Scholar 

  101. Kingdon EC, Russell JS. Infantile cerebral degeneration with symmetrical changes at the macula. Med Chir Trans. 1897;80:87–118.5. Royal Society of Medicine Press. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/20896909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fernandes Filho JA, Shapiro BE. Tay-Sachs disease. JAMA Neurol. 2004;61(9):1466–8.

    Google Scholar 

  103. Maegawa GHB, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118(5):e1550–62.

    Article  PubMed  Google Scholar 

  104. Ferreira CR, Gahl WA. Lysosomal storage diseases. Metab Dis Found Clin Manag Genet Pathol. 2017;2:367–440.

    Google Scholar 

  105. Sandhoff K, Andreae U, Jatzkewitz H. Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs. Life Sci. 1968;7(6):283–8.

    Article  CAS  PubMed  Google Scholar 

  106. Hadfield MG, Mamunes P, David RB. The Pathology of Sandhoff’s Disease. J Pathol. 1977;123(3):137–44.

    Google Scholar 

  107. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. J Am Med Assoc. 1999;281(3):249–54.

    Google Scholar 

  108. Fitterer B, Hall P, Antonishyn N, Desikan R, Gelb M, Lehotay D. Incidence and carrier frequency of Sandhoff disease in Saskatchewan determined using a novel substrate with detection by tandem mass spectrometry and molecular genetic analysis. Mol Genet Metab. 2014;111(3):382–9.

    Google Scholar 

  109. Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov AA. New approaches to Tay-Sachs disease therapy. Front Physiol. 2018;9:1–11.

    Article  Google Scholar 

  110. Bley AE, Giannikopoulos OA, Hayden D, Kubilus K, Tifft CJ, Eichler FS. Natural history of infantile G M2 gangliosidosis. Pediatrics. 2011;128(5):1233–41.

    Article  Google Scholar 

  111. Neudorfer O, Pastores GM, Zeng BJ, Gianutsos J, Zaroff CM, Kolodny EH. Late-onset Tay-Sachs disease: phenotypic characterization and genotypic correlation in 21 affected patients. Genet Med. 2005;7(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  112. Venugopalan P, Joshi S. Cardiac involvement in infantile Sandhoff disease. J Paediatr Child Health. 2002;38(1):98–100. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/11869411.

    Article  CAS  PubMed  Google Scholar 

  113. Sakpichaisakul K, Taeranawich P, Nitiapinyasakul A, Sirisopikun T. Identification of Sandhoff disease in a Thai family: clinical and biochemical characterization. J Med Assoc Thai. 2010;93(9):1088–92. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/20873083.

    PubMed  Google Scholar 

  114. Lee H-F, Chi C-S, Tsai C-R. Early cardiac involvement in an infantile Sandhoff disease case with novel mutations. Brain Dev. 2017;39(2):171–6. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/27697305.

    Article  PubMed  Google Scholar 

  115. Klima H, Tanaka A, Schnabel D, Nakano T, Schröder M, Suzuki K, et al. Characterization of full-length cDNAs and the gene coding for the human GM2 activator protein. FEBS Lett. 1991;289(2):260–4.

    Article  CAS  PubMed  Google Scholar 

  116. Cachon-Gonzalez MB, Zaccariotto E, Cox TM. Genetics and therapies for GM2 gangliosidosis. Curr Gene Ther. 2018;18(2):68–89. Bentham Science Publishers. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/29618308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lawson CA, Martin DR. Animal models of GM2 gangliosidosis: utility and limitations. Appl Clin Genet. 2016;9:111–20. Dove Press. [cited 2019 Sep 1]. http://www.ncbi.nlm.nih.gov/pubmed/27499644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Phaneuf D, Wakamatsu N, Huang JQ, Borowski A, Peterson AC, Fortunato SR, et al. Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases. Hum Mol Genet. 1996;5(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  119. Yamanaka S, Johnson MD, Grinberg A, Westphal H, Crawley JN, Taniike M, et al. Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc Natl Acad Sci U S A. 1994;91(21):9975–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sango K, Yamanaka S, Hoffmann A, Okuda Y, Sandhoff K, Suzuki K, et al. Mouse models of Tay-Sachs and neurologic phenotype and. Nature. 1995;11(2):170–6.

    CAS  Google Scholar 

  121. Taniike M, Yamanaka S, Proia RLL, Langaman C, Bone-Turrentine T, Suzuki K. Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay-Sachs disease. Acta Neuropathol. 1995;89(4):296–304. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/7610760.

    Article  CAS  PubMed  Google Scholar 

  122. Miklyaeva EI, Dong W, Bureau A, Fattahie R, Xu Y, Su M, et al. Late onset Tay–Sachs disease in mice with targeted disruption of the Hexa gene: behavioral changes and pathology of the central nervous system. Brain Res. 2004;1001(1–2):37–50. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/14972652.

    Article  CAS  PubMed  Google Scholar 

  123. Yuziuk JA, Bertoni C, Beccari T, Orlacchio A, Wu YY, Li SC, et al. Specificity of mouse GM2 activator protein and beta-N-acetylhexosaminidases A and B. Similarities and differences with their human counterparts in the catabolism of GM2. J Biol Chem. 1998;273(1):66–72. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/9417048.

    Article  CAS  PubMed  Google Scholar 

  124. Bertoni C, Li YT, Li SC. Catabolism of asialo-GM2 in man and mouse. Specificity of human/mouse chimeric GM2 activator proteins. J Biol Chem. 1999;274(40):28612–8. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/10497228.

    Article  CAS  PubMed  Google Scholar 

  125. Seyrantepe V, Demir SA, Timur ZK, Von Gerichten J, Marsching C, Erdemli E, et al. Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Exp Neurol. 2018;299(Pt A):26–41. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/28974375.

    Article  CAS  PubMed  Google Scholar 

  126. Wada R, Tifft CJ, Proia RL. Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proc Natl Acad Sci U S A. 2000;97(20):10954–9. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/11005868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jeyakumar M, Thomas R, Elliot-Smith E, Smith DA, van der Spoel AC, d’Azzo A, et al. Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis. Brain. 2003;126(4):974–87. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/12615653.

    Article  CAS  PubMed  Google Scholar 

  128. Pelled D, Riebeling C, van Echten-Deckert G, Sandhoff K, Futerman AH. Reduced rates of axonal and dendritic growth in embryonic hippocampal neurones cultured from a mouse model of Sandhoff disease. Neuropathol Appl Neurobiol. 2003;29(4):341–9. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/12887594.

    Article  CAS  PubMed  Google Scholar 

  129. Ogawa Y, Kaizu K, Yanagi Y, Takada S, Sakuraba H, Oishi K. Abnormal differentiation of Sandhoff disease model mouse-derived multipotent stem cells toward a neural lineage. PLoS One. 2017;12(6):e0178978. Kerkis I, editor. https://dx.plos.org/10.1371/journal.pone.0178978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kuil LEE, López Martí A, Carreras Mascaro A, van den Bosch JC, van den Berg P, van der Linde HC, et al. Hexb enzyme deficiency leads to lysosomal abnormalities in radial glia and microglia in zebrafish brain development. Glia. 2019;67(9):1705–18. John Wiley & Sons, Ltd. [cited 2019 Sep 11]. https://onlinelibrary.wiley.com/doi/abs/10.1002/glia.23641.

    PubMed  PubMed Central  Google Scholar 

  131. Becker CG, Becker T. Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci. 2008;26(2–3):71–80.

    PubMed  Google Scholar 

  132. Cork L, Munnell J, Lorenz M, Murphy J, Baker H, Rattazzi M. GM2 ganglioside lysosomal storage disease in cats with beta-hexosaminidase deficiency. Science. 1977;196(4293):1014–7. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/404709.

    Article  CAS  PubMed  Google Scholar 

  133. Kanae Y, Endoh D, Yamato O, Hayashi D, Matsunaga S, Ogawa H, et al. Nonsense mutation of feline β-hexosaminidase β-subunit (HEXB) gene causing Sandhoff disease in a family of Japanese domestic cats. Res Vet Sci. 2007;82(1):54–60. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/16872651.

    Article  CAS  PubMed  Google Scholar 

  134. Kolicheski A, Johnson GS, Villani NA, O’Brien DP, Mhlanga-Mutangadura T, Wenger DA, et al. GM2 gangliosidosis in Shiba Inu dogs with an in-frame deletion in HEXB. J Vet Intern Med. 2017;31(5):1520–6. [cited 2019 Sep 13]. http://doi.wiley.com/10.1111/jvim.14794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Martin DR, Krum BK, Varadarajan GS, Hathcock TL, Smith BF, Baker HJ. An inversion of 25 base pairs causes feline GM2 gangliosidosis variant 0. Exp Neurol. 2004;187(1):30–7. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/15081585.

    Article  CAS  PubMed  Google Scholar 

  136. Rahman MM, Chang H-S, Mizukami K, Hossain MA, Yabuki A, Tamura S, et al. A frameshift mutation in the canine HEXB gene in toy poodles with GM2 gangliosidosis variant 0 (Sandhoff disease). Vet J. 2012;194(3):412–6. [cited 2019 Sep 13]. https://linkinghub.elsevier.com/retrieve/pii/S1090023312002237.

    Article  CAS  PubMed  Google Scholar 

  137. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP, et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 1998;273(22):14037–45. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9593755.

    Article  CAS  PubMed  Google Scholar 

  138. Zeng BJ, Torres PA, Viner TC, Wang ZH, Raghavan SS, Alroy J, et al. Spontaneous appearance of Tay–Sachs disease in an animal model. Mol Genet Metab. 2008;95(1–2):59–65. Academic Press. [cited 2019 Sep 13]. https://www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/S1096719208001716?via%3Dihub.

    Article  CAS  PubMed  Google Scholar 

  139. Fox J, Li YT, Dawson G, Alleman A, Johnsrude J, Schumacher J, et al. Naturally occurring GM2 gangliosidosis in two Muntjak deer with pathological and biochemical features of human classical Tay-Sachs disease (type B GM2 gangliosidosis). Acta Neuropathol. 1999;97(1):57–62. [cited 2019 Sep 13]. http://link.springer.com/10.1007/s004010050955.

    Article  CAS  PubMed  Google Scholar 

  140. Kosanke SD, Pierce KR, Bay WW. Clinical and biochemical abnormalities in porcine GM2-gangliosidosis. Vet Pathol. 1978;15(6):685–99. [cited 2019 Sep 13]. http://journals.sagepub.com/doi/10.1177/030098587801500601.

    Article  CAS  PubMed  Google Scholar 

  141. Rockwell HE, McCurdy VJ, Eaton SC, Wilson DU, Johnson AK, Randle AN, et al. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro. 2015;7(2):175909141556990. [cited 2019 Sep 13]. http://journals.sagepub.com/doi/10.1177/1759091415569908.

    Article  CAS  Google Scholar 

  142. McCurdy VJ, Rockwell HE, Arthur JR, Bradbury AM, Johnson AK, Randle AN, et al. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease. Gene Ther. 2015;22(2):181–9. [cited 2019 Sep 13]. http://www.nature.com/articles/gt2014108.

    Article  CAS  PubMed  Google Scholar 

  143. Bradbury AM, Cochran JN, McCurdy VJ, Johnson AK, Brunson BL, Gray-Edwards H, et al. Therapeutic response in feline Sandhoff disease despite immunity to intracranial gene therapy. Moll Ther. 2013;21(7):1306–15. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/23689599.

    Article  CAS  Google Scholar 

  144. Torres PA, Zeng BJ, Porter BF, Alroy J, Horak F, Horak J, et al. Tay-Sachs disease in Jacob sheep. Mol Genet Metab. 2010;101(4):357–63. [cited 2019 Sep 12]. http://www.ncbi.nlm.nih.gov/pubmed/20817517.

    Article  CAS  PubMed  Google Scholar 

  145. Porter BF, Lewis BC, Edwards JF, Alroy J, Zeng BJ, Torres PA, et al. Pathology of GM2 gangliosidosis in Jacob sheep. Vet Pathol. 2011;48(4):807–13.

    Article  CAS  PubMed  Google Scholar 

  146. Wessels ME, Holmes JP, Jeffrey M, Jackson M, Mackintosh A, Kolodny EH, et al. GM2 gangliosidosis in British Jacob sheep. J Comp Pathol. 2014;150(2–3):253–7. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/24309906.

    Article  CAS  PubMed  Google Scholar 

  147. Gray-Edwards HL, Randle AN, Maitland SA, Benatti HR, Hubbard SM, Canning PF, et al. Adeno-associated virus gene therapy in a sheep model of Tay–Sachs disease. Hum Gene Ther. 2018;29(3):312–26. [cited 2019 Sep 13]. http://www.ncbi.nlm.nih.gov/pubmed/28922945.

    Article  CAS  PubMed  Google Scholar 

  148. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16(2):115–30. [cited 2019 Sep 16]. http://www.ncbi.nlm.nih.gov/pubmed/27980341.

    Article  CAS  PubMed  Google Scholar 

  149. Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, et al. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res. 2018;59(3):550–63. http://www.jlr.org/lookup/doi/10.1194/jlr.M081323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tu Z, Yang W, Yan S, Guo X, Li X-J. CRISPR/Cas9: a powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases. Mol Neurodegener. 2015;10(1):35. BioMed Central. [cited 2019 Sep 15]. http://www.molecularneurodegeneration.com/content/10/1/35.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Hanna-Rose .

Editor information

Editors and Affiliations

Glossary

Ataxia

is a lack of voluntary coordination of muscle movements.

Dysphagia

is difficulty swallowing.

Hyperphenylalaninemia

refers to elevated concentrations of the amino acid phenylalanine in the blood.

Hyperuricemia

refers to elevated uric acid levels in the blood.

PEGylated

refers to covalent and noncovalent modification of a protein with PEG.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moro, C.A., Hanna-Rose, W. (2020). Animal Model Contributions to Congenital Metabolic Disease. In: Liu, A. (eds) Animal Models of Human Birth Defects. Advances in Experimental Medicine and Biology, vol 1236. Springer, Singapore. https://doi.org/10.1007/978-981-15-2389-2_9

Download citation

Publish with us

Policies and ethics