Skip to main content

Care of the Diabetic Woman Undergoing Medically Assisted Reproduction

  • Chapter
  • First Online:
Textbook of Assisted Reproduction

Abstract

Diabetes mellitus, whether gestational, type 1, or type 2, is associated with a myriad of long-term morbidities, especially as one progresses in age. It is estimated that more than eight million women in the United States have diabetes mellitus prior to pregnancy and that it is observed in up to 1% of all pregnancies [The American College of Obstetricians and Gynecologists, 2005]. Although gestational diabetes arises with carbohydrate intolerance only during pregnancy, its prevalence varies in direct proportion with type 2 diabetes in a given population or ethnic group, and up to 50% of women with gestational diabetes can proceed to develop type 2 diabetes later in life [The American College of Obstetricians and Gynecologists, 2013]. With increasing prevalence of diabetes in the general population and advances in biotechnology allowing older women or women with chronic health conditions or complex infertility issues to become pregnant, thought about intentional, specialized preconception and antenatal counseling and care must be undertaken. After reading this chapter, readers will be able to understand the prevalence of obesity and impaired glucose metabolism and the impacts they have on health and assisted reproduction outcomes; explain the current knowledge of pathophysiology behind abnormal glucose metabolism and adverse reproductive outcomes; and recognize recommendations for women with obesity and/or diabetes seeking assisted reproductive techniques. A brief overview of the impact of diabetes on male fertility will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The American College of Obstetricians and Gynecologists. Pregestational Diabetes Mellitus. 2005. Print.

    Google Scholar 

  2. The American College of Obstetricians and Gynecologists. Gestational Diabetes Mellitus. 2013. Print.

    Google Scholar 

  3. Diamond M, Lavy G, Polan M. Progesterone production from granulosa cells of individual human follicles derived from diabetic and nondiabetic subjects. Int J Fertil. 1989;34(3):204–8.

    CAS  PubMed  Google Scholar 

  4. Riskin-Mashiah S, Auslander R. Quality of medical care in diabetic women undergoing fertility treatment: we should do better! Diabetes Care. 2011;34(10):2164–9.

    PubMed  PubMed Central  Google Scholar 

  5. Tripathi A, Rankin J, Aarvold J, Chandler C, Bell R. Preconception counseling in women with diabetes: a population-based study in the north of England. Diabetes Care. 2010;33:586–8.

    PubMed  Google Scholar 

  6. Johnson NP. Metformin use in women with polycystic ovary syndrome. Ann Transl Med. 2014;2(6):56.

    PubMed  PubMed Central  Google Scholar 

  7. An Y, Sun Z, Zhang Y, Liu B, Guan Y, Lu M. The use of Berberine for women with polycystic ovary syndrome undergoing IVF treatment. Clin Endocrinol. 2013;80(3):425–31.

    Google Scholar 

  8. Ashrafi M, Sheikhan F, Arabipoor A, Hosseini R, Nourbakhsh F, Zolfaghari Z. Gestational diabetes mellitus risk factors in women with polycystic ovary syndrome (PCOS). Eur J Obstet Gynecol Reprod Biol. 2014;181:195–9.

    PubMed  Google Scholar 

  9. Holte J, Gennarelli G, Wide L, Lithell H, Berne C. High prevalence of polycystic ovaries and associated clinical, endocrine, and metabolic features in women with previous gestational diabetes mellitus. J Clin Endocrinol Metabol. 1998;83(4):1143–50.

    CAS  Google Scholar 

  10. Levran D, Shoham Z, Habib D, Greenwald M, Nebel L, Mashiach S. Glucose tolerance in pregnant women following treatment for sterility. Int J Fertil. 1990;35(3):157–9.

    CAS  PubMed  Google Scholar 

  11. Cozzolino M, Serena C, Maggio L, Rambaldi M, Simeone S, Mello G, et al. Analysis of the main risk factors for gestational diabetes diagnosed with International Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria in multiple pregnancies. J Endocrinol Investig. 2017;40(9):937–43.

    CAS  Google Scholar 

  12. Wang Y, Nikravan R, Smith H, Sullivan E. Higher prevalence of gestational diabetes mellitus following assisted reproduction technology treatment. Hum Reprod. 2013;28(9):2554–61.

    CAS  PubMed  Google Scholar 

  13. Maman E, Lunenfeld E, Levy A, Vardi H, Potashnik G. Obstetric outcome of singleton pregnancies conceived by in vitro fertilization and ovulation induction compared with those conceived spontaneously. Fertil Steril. 1998;70(2):240–5.

    CAS  PubMed  Google Scholar 

  14. Ashrafi M, Gosili R, Hosseini R, Arabipoor A, Ahmadi J, Chehrazi M. Risk of gestational diabetes mellitus in patients undergoing assisted reproductive techniques. Eur J Obstet Gynecol Reprod Biol. 2014;176:149–52.

    CAS  PubMed  Google Scholar 

  15. Bals-Pratsch M, Großer B, Seifert B, Ortmann O, Seifarth C. Early onset and high prevalence of gestational diabetes in PCOS and insulin resistant women before and after assisted reproduction. Exp Clin Endocrinol Diabetes. 2011;119(06):338–42.

    CAS  PubMed  Google Scholar 

  16. Pieard F, Wanatabe M, Schoonjans K. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to beta cell proliferation. Proc Natl Acad Sci. 2002;99:16544–5648.

    Google Scholar 

  17. Waters T, Schultz B, Mercer B, Catalano P. Effect of 17α-hydroxyprogesterone caproate on glucose intolerance in pregnancy. Obstet Gynecol. 2009;114(1):45–9.

    CAS  PubMed  Google Scholar 

  18. Chen R, Fisch B, Ben-Haroush A, Kaplan B, Hod M, Orvieto R. Serum and follicular fluid leptin levels in patients undergoing controlled ovarian hyperstimulation for in vitro cycle. Clin Exp Obstet Gynecol. 2004;31:103–6.

    CAS  PubMed  Google Scholar 

  19. Regan L, Owen E, Jacobs H. Hypersecretion of luteinising hormone, infertility, and miscarriage. Lancet. 1990;336:1141–4.

    CAS  PubMed  Google Scholar 

  20. Homburg R, Armar N, Eshel A, Adams J, Jacobs H. Influence of serum luteinising hormone concentrations on ovulation, conception, and early pregnancy loss in polycystic ovary syndrome. Br Med J. 1988;297:1024–6.

    CAS  Google Scholar 

  21. Clifford K, Rai R, Watson H, Franks S, Regan L. Does suppressing luteinising hormone secretion reduce the miscarriage rate? Results of a randomised controlled trial. Br Med J. 1996;312:1508–11.

    CAS  Google Scholar 

  22. Khattab S, Mohsen I, Foutouh I, Ramadan A, Moaz M, Al-Inany H. Metformin reduces abortion in pregnant women with polycystic ovary syndrome. Gynecol Endocrinol. 2006;22(12):680–4.

    CAS  PubMed  Google Scholar 

  23. Okon M. Serum androgen levels in women who have recurrent miscarriages and their correlation with markers of endometrial function. Fertil Steril. 1998;69(4):682–90.

    CAS  PubMed  Google Scholar 

  24. Tulppala M, Stenman U, Cacciatore B, Ylikorkala O. Polycystic ovaries and levels of gonadotrophins and androgens in recurrent miscarriage: prospective study in 50 women. BJOG Int J Obstet Gynaecol. 1993;100(4):348–52.

    CAS  Google Scholar 

  25. Jakubowicz D. Insulin reduction with metformin increases luteal phase serum glycodelin and insulin-like growth factor-binding protein 1 concentrations and enhances uterine vascularity and blood flow in the polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86(3):1126–33.

    CAS  PubMed  Google Scholar 

  26. Bolton A, Clough K, Stoker R, Pockley A, Mowles E, Westwood O, et al. Identification of placental protein 14 as an immunosuppressive factor in human reproduction. Lancet. 1987;329(8533):593–5.

    Google Scholar 

  27. Okamoto N, Uchida A, Takakura K, Kariya Y, Kanzaki H, Riittinen L, et al. Suppression by human placental protein 14 of natural killer cell activity. Am J Reprod Immunol. 1991;26(4):137–42.

    CAS  PubMed  Google Scholar 

  28. Giudice L, Mark S, Irwin J. Paracrine actions of insulin-like growth factors and IGF binding protein-1 in non-pregnant human endometrium and at the decidual–trophoblast interface. J Reprod Immunol. 1998;39(1–2):133–48.

    CAS  PubMed  Google Scholar 

  29. Jones J, Gockerman A, Busby W Jr, Wright G, Clemmons D. Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha5 beta1 integrin by means of is Arg-Gly-Asp sequence. Proc Natl Acad Sci USA. 1993;90:10553–7.

    CAS  PubMed  Google Scholar 

  30. Diamanti-Kandarakis E, Alexandraki K, Protogerou A, Piperi C, Papamichael C, Aessopos A, et al. Metformin administration improves endothelial function in women with polycystic ovary syndrome. Eur J Endocrinol. 2005;152(5):749–56.

    CAS  PubMed  Google Scholar 

  31. Diamanti-Kandarakis E. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Hum Reprod. 2006;21(6):1426–31.

    CAS  PubMed  Google Scholar 

  32. Caballero A, Delgado A, Aguilar-Salinas C, Herrera A, Castillo J, Cabrera T, et al. The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J Clin Endocrinol Metabol. 2004;89(8):3943–8.

    CAS  Google Scholar 

  33. Orio F, Palomba S, Cascella T, De Simone B, Manguso F, Savastano S, et al. Improvement in endothelial structure and function after metformin treatment in young normal-weight women with polycystic ovary syndrome: results of a 6-month study. J Clin Endocrinol Metabol. 2005;90(11):6072–6.

    CAS  Google Scholar 

  34. Meenakumari K, Agarwal S, Krishna A, Pandey L. Effects of metformin treatment on luteal phase progesterone concentration in polycystic ovary syndrome. Braz J Med Biol Res. 2004;37(11):1637–44.

    CAS  PubMed  Google Scholar 

  35. Glueck C, Wang P, Fontaine R, Sieve-Smith L, Tracy T, Moore S. Plasminogen activator inhibitor activity: an independent risk factor for the high miscarriage rate during pregnancy in women with polycystic ovary syndrome. Metabolism. 1999;48(12):1589–95.

    CAS  PubMed  Google Scholar 

  36. Gris J, Neveu S, Mares P, Biron C, Hedon B, Schved J. Plasma fibrinolytic activators and their inhibitors in women suffering from early recurrent abortion of unknown etiology. J Lab Clin Med. 1993;122:606–15.

    CAS  PubMed  Google Scholar 

  37. Maruthini D, Harris S, Barth J, Balen A, Campbell B, Picton H. The effect of metformin treatment in vivo on acute and long-term energy metabolism and progesterone production in vitro by granulosa cells from women with polycystic ovary syndrome. Hum Reprod. 2014;29(10):2302–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jacob S, Brewer C, Tang T, Picton H, Barth J, Balen A. A short course of metformin does not reduce OHSS in a GnRH antagonist cycle for women with PCOS undergoing IVF: a randomised placebo-controlled trial. Hum Reprod. 2016;31(12):2756–64.

    CAS  PubMed  Google Scholar 

  39. Ng E, Tang O, Ho P. The significance of the number of antral follicles prior to stimulation in predicting ovarian responses in an IVF programme. Hum Reprod. 2000;15(9):1937–42.

    CAS  PubMed  Google Scholar 

  40. Doldi N, Persico P, Di Sebastiano F, Marsiglio E, Ferrari A. Gonadotropin-releasing hormone antagonist and metformin for treatment of polycystic ovary syndrome patients undergoing in vitro fertilization–embryo transfer. Gynecol Endocrinol. 2006;22(5):235–8.

    PubMed  Google Scholar 

  41. Önalan G, Pabuçcu R, Goktolga U, Ceyhan T, Bagis T, Cıncık M. Metformin treatment in patients with polycystic ovary syndrome undergoing in vitro fertilization: a prospective randomized trial. Fertil Steril. 2005;84(3):798–801.

    PubMed  Google Scholar 

  42. Wei W, Zhao H, Wang A, Sui M, Liang K, Deng H, et al. A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. Eur J Endocrinol. 2011;166(1):99–105.

    PubMed  Google Scholar 

  43. Turner N, Li J, Gosby A, To S, Cheng Z, Miyoshi H, et al. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes. 2008;57(5):1414–8.

    CAS  PubMed  Google Scholar 

  44. Zhou L, Yang Y, Wang X, Liu S, Shang W, Yuan G, et al. Berberine stimulates glucose transport through a mechanism distinct from insulin. Metabolism. 2007;56(3):405–12.

    CAS  PubMed  Google Scholar 

  45. Zhang H, Wei J, Xue R, Wu J, Zhao W, Wang Z, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism. 2010;59(2):285–92.

    PubMed  Google Scholar 

  46. Imudia A, Awonuga A, Kaimal A, Wright D, Styer A, Toth T. Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverse obstetric outcomes: a preliminary study. Fertil Steril. 2013;99(1):168–73.

    PubMed  Google Scholar 

  47. Farhi J, Haroush A, Andrawus N, Pinkas H, Sapir O, Fisch B, et al. High serum oestradiol concentrations in IVF cycles increase the risk of pregnancy complications related to abnormal placentation. Reprod Biomed Online. 2010;21(3):331–7.

    CAS  PubMed  Google Scholar 

  48. Jackson R, Gibson K, Wu Y, Croughan M. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103(3):551–63.

    PubMed  Google Scholar 

  49. Kallen B, Finnstrom O, Nygren K, Otterblad Olausson P, Wennerholm U. In vitro fertilisation in Sweden: obstetric characteristics, maternal morbidity and mortality. BJOG Int J Obstet Gynaecol. 2005;112(11):1529–35.

    Google Scholar 

  50. Zhu L, Zhang Y, Liu Y, Zhang R, Wu Y, Huang Y, et al. Maternal and live-birth outcomes of pregnancies following assisted reproductive technology: a retrospective Cohort study. Sci Rep. 2016;6(1):35151.

    Google Scholar 

  51. Qin J, Sheng X, Wu D, Gao S, You Y, Yang T, et al. Worldwide prevalence of adverse pregnancy outcomes among singleton pregnancies after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Arch Gynecol Obstet. 2016;295(2):285–301.

    PubMed  Google Scholar 

  52. Jaques A, Amor D, Baker H, Healy D, Ukoumunne O, Breheny S, et al. Adverse obstetric and perinatal outcomes in subfertile women conceiving without assisted reproductive technologies. Fertil Steril. 2010;94(7):2674–9.

    PubMed  Google Scholar 

  53. Thomson F, Shanbhag S, Templeton A, Bhattacharya S. Obstetric outcome in women with subfertility. BJOG Int J Obstet Gynaecol. 2005;112(5):632–7.

    Google Scholar 

  54. Ratson R, Sheiner E, Davidson E, Sergienko R, Beharier O, Kessous R. Fertility treatments and the risk for ophthalmic complications: a cohort study with 25-year follow-up. J Matern Fetal Neonatal Med. 2016;29(19):3094–7.

    PubMed  Google Scholar 

  55. Fauser B, Devroey P, Diedrich K, Balaban B, Bonduelle M, Delemarre-van de Waal H, et al. Health outcomes of children born after IVF/ICSI: a review of current expert opinion and literature. Reprod Biomed Online. 2014;28(2):162–82.

    CAS  PubMed  Google Scholar 

  56. Hargreave M, Kjaer S, Jørgensen M, Jensen A. Type 1 diabetes risk in children born to women with fertility problems: a cohort study in 1.5 million Danish children. Acta Obstet Gynecol Scand. 2016;95(12):1441–6.

    PubMed  Google Scholar 

  57. Kissin D, Jamieson D, Barfield W. Monitoring health outcomes of assisted reproductive technology. N Engl J Med. 2014;371(1):91–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sexton W, Jarow J. Effect of diabetes mellitus upon male reproductive function. Urology. 1997;49(4):508–13.

    CAS  PubMed  Google Scholar 

  59. Agbaje I, Rogers D, McVicar C, McClure N, Atkinson A, Mallidis C, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22(7):1871–7.

    CAS  PubMed  Google Scholar 

  60. Trisini A, Singh N, Duty S, Hauser R. Relationship between human semen parameters and deoxyribonucleic acid damage assessed by the neutral comet assay. Fertil Steril. 2004;82(6):1623–32.

    PubMed  Google Scholar 

  61. Evenson DP, Jost LK, Marshall D, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    CAS  PubMed  Google Scholar 

  62. Lestienne P, Reynier P, Chretien MF, et al. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997;3(9):811–4.

    CAS  PubMed  Google Scholar 

  63. Van Houten B, Woshner V, Santos J. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair. 2006;5(2):145–52.

    PubMed  Google Scholar 

  64. Padrón R, Dambay A, Suárez R, Más J. Semen analyses in adolescent diabetic patients. Acta Diabetol Lat. 1984;21(2):115–21.

    PubMed  Google Scholar 

  65. Garcia-diez L, Corrales Hernandez J, Hernandez-diaz J, Pedraz M, Miralles J. Semen characteristics and diabetes mellitus: significance of insulin in male infertility. Arch Androl. 1991;26(2):119–28.

    CAS  PubMed  Google Scholar 

  66. Handelsman DJ, Conway AJ, Boylan LM, et al. Testicular function and glycemic control in diabetic men. A controlled study. Andrologia. 1985;17:488–96.

    CAS  PubMed  Google Scholar 

  67. Ali S, Shaikh R, Siddiqi N, Siddiqi P. Semen analysis in insulin-dependent/non-insulin-dependent diabetic men with/without neuropathy. Arch Androl. 1993;30(1):47–54.

    CAS  PubMed  Google Scholar 

  68. Bonde J, Ernst E, Jensen T, Hjollund N, Kolstad H, Scheike T, et al. Relation between semen quality and fertility: a population-based study of 430 first-pregnancy planners. Lancet. 1998;352(9135):1172–7.

    CAS  PubMed  Google Scholar 

  69. Saleh R, Agarwal A, Nelson D, Nada E, El-Tonsy M, Alvarez J, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313–8.

    PubMed  Google Scholar 

  70. Matsuda Y, Tobari I. Repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes. Mutat Res Fundam Mol Mech Mutagen. 1989;210(1):35–47.

    CAS  Google Scholar 

  71. Genesca A, Caballin M, Miro R, et al. Repair of human sperm chromosome aberrations in the hamster egg. Hum Genet. 1992;89(2):181–6.

    CAS  PubMed  Google Scholar 

  72. Ahmadi A, Ng S. Developmental capacity of damaged spermatozoa. Hum Reprod. 1999;14(9):2279–85.

    CAS  PubMed  Google Scholar 

  73. Ahmadi A, Ng S. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284(6):696–704.

    CAS  PubMed  Google Scholar 

  74. Brinkworth M. Paternal transmission of genetic damage: findings in animals and humans. Int J Androl. 2000;23(3):123–35.

    CAS  PubMed  Google Scholar 

  75. Aitken R, Baker M, Sawyer D. Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online. 2003;7(1):65–70.

    CAS  PubMed  Google Scholar 

  76. Aitken R, Ryan AL, Curry BJ, et al. Multiple forms of redox activity in populations of human spermatozoa. Mol Hum Reprod. 2003;9(11):645–61.

    CAS  PubMed  Google Scholar 

  77. Aitken R. Founders’ lecture. Human spermatozoa: fruits of creation, seeds of doubt. Reprod Fertil Dev. 2004;16(7):655.

    PubMed  Google Scholar 

  78. Fraga C, Motchnik P, Wyrobek A, Rempel D, Ames B. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res Fundam Mol Mech Mutagen. 1996;351(2):199–203.

    Google Scholar 

  79. Ji B, Shu X, Zheng W, Ying D, Linet M, Wacholder S, et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. JNCI J Natl Cancer Inst. 1997;89(3):238–43.

    CAS  PubMed  Google Scholar 

  80. Manicardi G, Bianchi P, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52(4):864–7.

    CAS  PubMed  Google Scholar 

  81. Shen H, Dai J, Chia S-E, et al. Detection of apoptotic alterations in sperm in subfertile patients and their correlations with sperm quality. Hum Reprod. 2002;17(5):1266–73.

    PubMed  Google Scholar 

  82. Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. BioEssays. 1994;16:259–67.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kellie Flood-Shaffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marshall, H., Flood-Shaffer, K. (2020). Care of the Diabetic Woman Undergoing Medically Assisted Reproduction. In: Allahbadia, G.N., Ata, B., Lindheim, S.R., Woodward, B.J., Bhagavath, B. (eds) Textbook of Assisted Reproduction. Springer, Singapore. https://doi.org/10.1007/978-981-15-2377-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2377-9_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2376-2

  • Online ISBN: 978-981-15-2377-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics