Skip to main content

Role of Natural Products as Alternative of Synthetic Steroidal Drugs

  • Chapter
  • First Online:
Advances in Pharmaceutical Biotechnology

Abstract

Since the origination of human society, natural products and their derivatives especially obtained from medicinal plants have been used for the advantage of mankind due to their precious therapeutic potential. In Indian Ayurveda, different types of plant-based products have been used to cure several human diseases without any significant side effects, and that’s why an effective number of modern medicines has been isolated from natural sources involving medicinal plants. There are still some disease conditions where only synthetic drugs can be used for the treatment which quite often may lead to mild or severe side effects. It is, therefore, necessary to explore chemical compounds from Indian traditional medicinal plants as viable substitutes to the synthetic drugs in order to overcome their adverse effects and also the exorbitant cost. Glucocorticoids are widely used as potent anti-inflammatory and immunosuppressive agents for the treatment of various complications such as rheumatoid arthritis, joint pain, dermatitis, asthma, allergy, etc. Unfortunately, long-term use of corticosteroids even in low amount may cause severe adverse effects such as osteoporosis, reduction in bone mass, overweight, cataract–glaucoma, blurred vision, aggression, agitations, psychiatric and cognitive disturbance, cardiovascular disorders, hyperlipidemia, growth suppression, and many more. It has therefore been realized to explore plant-based principles as alternative and complementary therapeutics with almost no toxicity. The phyto-steroids such as solasodine, diosgenin, boswellic acid, glycyrrihizin, guggulsterones, withnolides, or sarsasapogenin are reported to have structural similarity with glucocorticoids or glycosides. In addition, the saponins, lactones, and some aliphatic compounds have been reported to possess efficiency to cure those diseases in which steroids are employed. However, extensive research is needed to detect other phytochemicals which may prove to act as potential substitutes of synthetic steroidal drugs. In this chapter, we have made an endeavor to present an updated account of those medicinal plants and corresponding phytochemicals with varied therapeutic properties as effective alternative steroids to be used against different chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ata, A., & Andersh, B. J. (2008). Buxus steroidal alkaloids: Chemistry and biology. Alkaloids. Chemistry and Biology, 66, 191–213.

    CAS  PubMed  Google Scholar 

  • Bajguz, A., & Tretyn, A. (2003). The chemical characteristics and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., Hayat, S., & Ahmad, A. (2011). Brassinosteroids: A class of plant hormones (pp. 1–27). Dordrecht: Springer.

    Book  Google Scholar 

  • Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S. E., Scala, F., & Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 68, 596–603.

    Google Scholar 

  • Baschant, U., Lane, N. E., & Tuckermann, J. (2012). The multiple facets of glucocorticoid action in rheumatoid arthritis. Nature Reviews Rheumatology, 8, 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Bathori, M., & Pongracz, Z. (2005). Phytoecdysteroids - from isolation to their effects on humans. Bentham Science 12,153–172.

    Google Scholar 

  • Becker. (1964). The side effects of corticosteroids. Investigative Ophthalmology, 3, 492–494.

    CAS  PubMed  Google Scholar 

  • Bhawani, S. A., Sulaiman, O., Hashim, R., & Ibrahim, M. N. (2010). Thin-layer chromatographic analysis of steroids: A review. Tropical Journal of Pharmaceutical Research, 9(3).

    Google Scholar 

  • Chaubey, M. (2017). Role of phytoecdysteroids in insect pest management: A review. Journal of Agronomy, 17, 1–10.

    Article  CAS  Google Scholar 

  • Chen, L.-X., He, H., & Qiu, F. (2011). Natural an overview. Natural Product Reports, 28, 705–710.

    Google Scholar 

  • Chitravanshi, V. C., Gupta, P. P., Kulshrestha, D. K., Kar, K., & Dhawan, B. N. (1990). Anti-allergic activity of Solanum xanthocarpum. Indian Journal of Pharmacology., 22, 23–30.

    Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell, 23, 1219–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Concepcion, P. M., Manuel, M., & Arturo, S. F. (2000). A short review on cardiotonic steroids and their aminoguanidine analogues. Molecules, 5, 51–81.

    Article  Google Scholar 

  • Curtis, J. R., Westfall, A. O., & Allison, J. (2006). Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheumatology, 55, 420–426.

    Article  Google Scholar 

  • Devkar, S., Badhe, Y., Jagtap, S., & Hegde, M. (2012). Quantification of major bioactive withanolides in (Ashwagandha) roots by HPTLC for rapid validation of Ayurvedic products. Journal of Planar Chromatography, 25, 290–294.

    Google Scholar 

  • Dinan, L. (2001). Phytoecdysteroids: Biological aspects. Phytochemistry, 57, 325–339.

    Google Scholar 

  • Dinan, L., Whiting, P., Alfonso, D., & Kapetanidis, I. (1996). Certain withanolides from Iochromagesnerioides antagonize ecdysteroid action in the Drosophila melanogaster cell line. Entomologia Experimentalis et Applicata., 80, 415–420.

    Google Scholar 

  • Dinan, L., Whiting, P., Girault, J. P., Lafont, R., Dhadialla, T. S., & Cress, D. E. (1997). Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochemical Journal, (3), 643–650.

    Google Scholar 

  • Dinan, L., Harmatha., & Lafont, R. (2011). Journal of Chromatographic Science, 102, 679–708.

    Google Scholar 

  • Dinan, L., Bourne, P. C., Meng, Y., Sarker, S. D., Tolentino, R. B., & Whiting, P. (2001). Assessment of natural products in the Drosophila melanogaster BII cell for agonist and antagonist activities. Cellular and Molecular Life Sciences, 58, 321–342.

    Google Scholar 

  • Glyn, J. (1998). The discovery and early use of cortisone. Journal of the Royal Society of Medicine, 91, 513–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindana, S., Viswanathan, S. B., Vijayasekaran, V. B., & Alagappan, A. R. (1999). Pilot study on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. Journal of Ethnopharmacology, 66, 205–210.

    Article  Google Scholar 

  • Govindana, S., Viswanathan, S. B., Vijayasekaran, V. B., & Alagappan, A. R. (2004). Further studies on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. Phytotherapy Research, 18, 805–809.

    Article  Google Scholar 

  • Gupta, S. S. (1994). Prospects and perspectives of natural plants products in medicine. Indian Journal Pharmacology, 26, 1–12.

    Google Scholar 

  • Gupta, D., Bhardwaj, R., & Nagar, P. K. (2004). Isolation and characterization of Brassinosteroids from leaves of Camellia sinensis (L.) O. Kuntze. Plant Growth Regulation, 43, 97–100.

    Article  CAS  Google Scholar 

  • Habtemariam, S. (1997). Cytotoxicity and immunosuppressive activity of withanolides from Discopodium penninervium. Planta Medica, 63, 15–17.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, M.-A. (2004). Sterol metabolism and function in higher plants. In G. Daum (Ed.), Lipid Metabolism and Membrane Biogenesis (pp. 183–211). Springer: Heidelberg.

    Google Scholar 

  • Hubert, S. (2003). The role of sterols in plant growth and development. Progress in Lipid Research., 42, 163–175.

    Article  CAS  Google Scholar 

  • Igarashi, F., Hikiba, J., Ogihara, M. H., Nakaoka, T., Suzuki, M., & Kataoka, H. (2011). A highly specific and sensitive analysis of the in silkworm larvae by high-performance liquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry. Analytical Biochemistry, 419, 123–132.

    Google Scholar 

  • Janeczko, A., & Skoczowski, A. (2005). Mammalian sex hormones in plants. Folia Histochemica Et Cytobiologica, 43, 71–79.

    CAS  PubMed  Google Scholar 

  • Jayaprakasam, B., & Nair, M. G. (2003). Cyclooxygenase-2 enzyme inhibitory withanolides from Withania somnifera leaves. Tetrahedron, 59, 841–849.

    Google Scholar 

  • Jones, P. J. H., MacDougall, D. E., Ntanios, F., & Vanstone, C. V. (1997). Dietary phytosterols as cholesterol-lowering agents in humans. Canadian Journal of Physiology and Pharmacology, 75, 217–227.

    Google Scholar 

  • Kaushik, U., Aeri, V., & Mir, S. (2015). Cucurbitacins – An insight into medicinal leads from nature. Pharmacogynosy Review, 9, 12–18.

    Article  CAS  Google Scholar 

  • Kendall, E. C. (1950). Nobel lecture: The development of cortisone as a therapeutic agent. Nobelprize.org. www.nobelprize.org/nobel_prizes/medicine/laureates/1950/

  • Kim, T. W., Hwang, J. Y., Kim, Y. S., Joo, S. H., Chang, S. C., Lee, J. S., Takatsuto, S., & Kim, S. K. (2005). Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of Castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell, 17, 2397–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirson, I., & Glotter, E. (1981). Recent developments in naturally occurring ergostane-type steroids: A review. Journal of Natural Products, 44, 633–647.

    Article  CAS  Google Scholar 

  • Kreis, W., & Müller-Uri, F. (2010). Biochemistry of plant secondary metabolism. Annual Plant Reviews, 40, 304–363.

    Google Scholar 

  • Krenn, L., & Kopp, B. (1988). Bufadienolides from animal and plant source. Phytochemistry, 48, 1–29.

    Article  Google Scholar 

  • Lavie, D., Glotter, E., & Shvo, Y. (1965). Constituents of Dun. Part IV. The structure of withaferin A. Journal of Chemical. Society, 7517–7531.

    Google Scholar 

  • Leyon, P. V., & Kuttan, G. (2004). Effect of Withania somnifera on B16F-10 melanoma induced metastasis in mice. Phytotherapy Results, 18, 118–122.

    Google Scholar 

  • Li, H.-J., Jiang, Y., & Li, P. (2006). Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Natural Product Reports, 23(5), 735.

    Google Scholar 

  • Mandava, N. B. (1988). Plant growth-promoting Brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 23–52.

    Google Scholar 

  • Manuel, M., Esther, C., Fernando, T., & Arturo, S. F. (2001). Cardenolides and diterpenes as a source of and model for positive ionotropic agents. Pharmaceutical Biology, 39, 53–62.

    Google Scholar 

  • Martucciello, S., Paolella, G., Muzashvili, T., Skhirtladze, A., Pizza, C., Caputo, I., & Piacente, S. (2018). Chemico-Biological Interactions, 279, 3–21.

    Article  CAS  Google Scholar 

  • Moghadasian. (2000) Pharmacological properties of plant sterols. Life Sciences 67, 605–615.

    Google Scholar 

  • Muhammad, K., Abdul, M., Saeed, A., & Hafiz, R. N. (1999). Withanolides from Ajuga parviflora. Journal of Natural Products, 62, 1290–1292.

    Article  CAS  Google Scholar 

  • Othman, R. A., & Moghadasian, M. H. (2011). Beyond cholesterol-lowering effects of plant sterols: Clinical and experimental evidence of anti-inflammatory properties. Nutrition Review, 69, 371–382.

    Article  Google Scholar 

  • Patel, S. S., & Savjani, J. K. (2015). Systematic review of plant steroids as potential antiinflammatory agents: Current status and future perspectives. Journal of Phytopharmacology., 4, 121–125.

    Google Scholar 

  • Pereira, R. M., Carvalho, J. F., & Canalis, E. (2010). Glucocorticoid-induced osteoporosis in rheumatic diseases. Clinics (São Paulo, Brazil), 65, 1197–1205.

    Article  Google Scholar 

  • Quan, H. J., Koyanagi, J., Komada, F., & Saito, S. (2005). Preparations of vitamin D analogs, spirostanols and furostanols from diosgenin and their cytotoxic activities. European Journal of Medicinal Chemistry, 40, 662–673.

    Article  CAS  PubMed  Google Scholar 

  • Roddick, J. G., & Melchers, G. (1985). Steroidal glycoalkaloid content of potato, tomato and their somatic hybrids. Theoretical and Applied Genetics, 70, 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, S. D., Whiting, P., Sik, V., & Dinan, L. (1999). Ecdysteroid antagonists cucurbitacins from Physocarpus opulifolius [Rosaceae]. Phytochemistry, 50, 1123–1128.

    Article  Google Scholar 

  • Schaller, H. (2010). Natural products structural diversity-I secondary metabolites: Organization and biosynthesis. Comprehensive Natural Products, 1, 755–787.

    Article  Google Scholar 

  • Shanker, K., Gupta, S., Srivastava, P., Srivastava, S., Singh, S. C., & Gupta, M. M. (2011). Simultaneous determination of three steroidal glycoalkaloids in Solanum xanthocarpum by high performance thin layer chromatography. Journal of Pharmaceutical and Biomedical Analysis, 54, 497–502.

    Google Scholar 

  • Siddique, H. R., & Saleem, M. (2011). Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Science, 88, 285–293.

    Article  CAS  Google Scholar 

  • Simersky, R., Novák, O., & Morris, D. A. (2009). Journal of Plant Growth Regulator, 28, 125–136.

    Google Scholar 

  • Simons, R. G., & Grinwich, D. L. (1989). Immunoreactive detection of four mammalian steroids in plants. Canadian Journal of Botany, 67, 288–296.

    Google Scholar 

  • Singh, R., Kumari, N., Gangwar, M., & Nath, G. (2016). Qualitative characterization of phytochemicals and in vitro antimicrobial evaluation of leaf extract of Couroupita guianensis aubl. – A threatened medicinal tree. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 212–215.

    Google Scholar 

  • Sobolewska, D., Michalska, K., Podolak, I., & Grabowska, K. (2016). Steroidal saponins from the genus Allium. Phytochemistry Reviews, 15, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Steyn, S., & Heerden, F. (1998). Bufadienolides of plant and animal origin. Natural Product Reports, 15, 397–413.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J., Blaskovich, M. A., Jove, R., Livingston, S. K., Coppola, D., & Sebti, S. M. (2005). Cucurbitacin Q: A selective STAT3 activation inhibitor with potent antitumor activity. Oncogene, 24, 3236–3245.

    Article  CAS  PubMed  Google Scholar 

  • Swartz, M. E. (2005). Ultra Performance Liquid Chromatography (UPLC): An Introduction. Separation Science Redefined, http://www.chromatographyonline.com/lcgc/data/articlestandard/lcgc/242005/164646/article.pdf (accessed 30 July 2012).

  • Torres, M. C. M., das, F., Pinto, C. L., & Braz-Filho, R.(2011). Antiophidic Solanidane steroidal alkaloids from Solanum campaniforme. Journal of Natural Products, 74, 2168–2173.

    Google Scholar 

  • Turk, R., & John, A. C. (2005). Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. The New England Journal of Medicine, 20, 1711–1723.

    Google Scholar 

  • Valitova, J. N., Sulkarnayeva, A. G., & Minibayeva, F. V. (2016). Plant sterols: Diversity, biosynthesis, and physiological functions. Biokhimiya, 81, 1050–1068.

    Google Scholar 

  • Villaseñor, I. M., Angelada, J., & Canlas, A. P. (2002). Phytotherapy Research, 16, 417–421.

    Article  CAS  PubMed  Google Scholar 

  • Wang, K., Sasaki, T., & Li, W. (2011). Two novel steroidal alkaloid glycosides from the seeds of Lycium barbarum. Chemical Biodiversity, 8, 2277–2284.

    Google Scholar 

  • Wen, S., Chen, Y., Lu, Y., Wang, Y., Ding, L., & Jiang, M. (2016). Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia, 112, 74–84.

    Article  CAS  PubMed  Google Scholar 

  • Wiart, C. (2013). Lead compounds from medicinal plants for the treatment of cancer (pp. 1–95). London: Academic.

    Book  Google Scholar 

  • Xu, J., Winkler, J., & Derendorf, H. (2007). A pharmacokinetic/pharmacodynamic approach to predict total prednisolone concentrations in human plasma. Journal of Pharmacokinetics and Pharmacodynamics, 34, 355–372.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Wang, W., Wang, J., Yang, J., & Xu, G. (2006). Urinary profiling investigation of metabolites withcis-diol structure from cancer patients based on UPLC-MS and HPLC-MS as well as multivariate statistical analysis. Journal of Separation Science, 29, 2444–2451.

    Google Scholar 

  • Zhou, J. L., Xin, G. Z., & Shi, Z. Q. (2010). Characterization and identification of steroidal alkaloids in fritillaria using liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectroscopy. Journal of Chromatography A, 40, 7109–7122. 

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PT is thankful to UGC-New Delhi for providing financial support in the form of a fellowship. RP is grateful to UPCST-UP Lucknow for financial support and KGMU-Lucknow for providing research facilities. RS thanks DST-New Delhi for awarding NPDF to her.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, P., Pandey, R., Singh, R., Sharma, B. (2020). Role of Natural Products as Alternative of Synthetic Steroidal Drugs. In: Patra, J., Shukla, A., Das, G. (eds) Advances in Pharmaceutical Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2195-9_7

Download citation

Publish with us

Policies and ethics