Skip to main content

On Adaptive Gauss-Hermite Quadrature for Estimation in GLMM’s

  • Conference paper
  • First Online:
Statistics and Data Science (RSSDS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1150))

Included in the following conference series:

Abstract

Adaptive Gauss-Hermite quadrature is used for the computation of the log-likelihood function for generalized linear mixed models. The basic first step in this method is to multiply and divide the integrand of interest by a carefully chosen probability density function. The same first step is used for the computation of this log-likelihood function using simulations that employ importance sampling. We compare these two methods by considering in detail a single cluster from a well-known teratology data set that is modelled using a logistic regression with random intercept. We show that while importance sampling fails for this computation, adaptive Gauss-Hermite quadrature does not. We derive a new upper bound on the error of approximation of adaptive Gauss-Hermite quadrature. Using this new upper bound, we show that the feature of this problem that makes importance sampling fail is useful in disclosing why adaptive Gauss-Hermite quadrature succeeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Q., Pierce, D.A.: A note on Gauss-Hermite quadrature. Biometrika 81, 624–629 (1994). https://doi.org/10.2307/2337136

    Article  MathSciNet  MATH  Google Scholar 

  2. Pinheiro, J.C., Bates, D.M.: Approximations to the log-likelihood function in nonlinear mixed-effects models. J. Comput. Graph. Stat. 4, 12–35 (1995). https://doi.org/10.2307/1390625

    Article  Google Scholar 

  3. Lesaffre, E., Spiessens, B.: On the effect of the number of quadrature points in logistic random-effects model: an example. Appl. Stat. 50, 325–335 (2001). https://doi.org/10.1111/1467-9876.00237

    Article  MathSciNet  MATH  Google Scholar 

  4. Rabe-Hesketh, S., Skrondal, A., Pickles, A.: Reliable estimation of generalized linear mixed models using adaptive quadrature. Stata J. 2, 1–21 (2002)

    Article  Google Scholar 

  5. Demidenko, E.: Mixed Models : Theory and Applications. Wiley, Hoboken (2004)

    Book  Google Scholar 

  6. Hedeker, D., Gibbons, R.D.: Longitudinal Data Analysis. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  7. Tuerlinckx, F., Rijmen, F., Verbeke, G., De Boeck, P.: Statistical inference in generalized linear mixed models: a review. Br. J. Math. Stat. Psychol. 59(2), 225–255 (2006). https://doi.org/10.1348/000711005X79857

    Article  MathSciNet  Google Scholar 

  8. Rabe-Hesketh, S., Skrondal, A.: Multilevel and Longitudinal Modeling Using Stata, 2nd edn. Stata Press, College Station (2008)

    MATH  Google Scholar 

  9. Kim, Y., Choi, Y., Emery, S.: Logistic regression with multiple random effects: a simulation study of estimation methods and statistical packages. Am. Stat. 67(3), 171–182 (2013). https://doi.org/10.1080/00031305.2013.817357

    Article  Google Scholar 

  10. Chang, B., Hoaglin, D.: Meta-analysis of odds ratios: current good practices. Med. Care 55(4), 328–335 (2017). https://doi.org/10.1097/MLR.0000000000000696

    Article  Google Scholar 

  11. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4145-2

    Book  MATH  Google Scholar 

  12. Owen, A.B.: Monte Carlo Theory, Methods and Examples (Chap. 9) (2013). http://statweb.stanford.edu/~owen/mc/. Accessed 01 Aug 2018

  13. Weil, C.: Selection of the valid number of sampling units and a consideration of their combination in toxicological studies involving reproduction, teratogenisis or carcinogenisis. Food Cosmet. Toxicol. 8, 177–182 (1970)

    Article  Google Scholar 

  14. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  15. Szegö, G.: Orthogonal Polynomials, vol. 23, 3rd edn. American Mathematical Society, Providence (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kabaila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kabaila, P., Ranathunga, N. (2019). On Adaptive Gauss-Hermite Quadrature for Estimation in GLMM’s. In: Nguyen, H. (eds) Statistics and Data Science. RSSDS 2019. Communications in Computer and Information Science, vol 1150. Springer, Singapore. https://doi.org/10.1007/978-981-15-1960-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1960-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1959-8

  • Online ISBN: 978-981-15-1960-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics