Skip to main content

Begomovirus Menace and Its Management in Vegetable Crops

  • Chapter
  • First Online:
New Frontiers in Stress Management for Durable Agriculture

Abstract

Vegetable is the most emerging sector of the horticultural commodity, which contribute not only to nutritional richness but, also on-farm and off-farm income. The begomoviruses, member of geminiviridae family are the largest contributor in devastation of these crops. Tomato, chilli, cassava, okra, cucurbits, and pulse vegetables suffer greatly due to these viruses. The conducive environment, continuous cropping of one or more host crop throughout the year, emergence of new viruleferoius vectors biotypes, and evolution of new recombinant virus strains are the most important factors in the spread of these diseases. The begomoviruses are either mono or bipartite, can be associated with alpha or betasatellite DNA, which has role in symptom development and virulence. Management of virus vector should be the major strategy to inhibit the contact between host and pathogen. Cultural practices like, removal of alternate hosts, destruction of unwanted weeds, and uprooting and burning of initially infected plants are commonly practiced. Management of sucking pest, mainly whitefly at regular interval with insecticide significantly reduces the chances of transmission of these viruses, however insecticide resistance is frequently observed among these group of pests. The viable and naturally safe method to control these diseases is through host plant resistance, by identification and transfer of resistance governing genes in cultivated backgrounds. Transgenic approaches targeting viral genes are also widely used for development of resistant lines. The most recent technology like genome editing with CRISPR/Cas-9 was also found promising in development of resistant tomato and cassava lines however, its widespread use is limited due to unavailability of information about susceptibility genes in several crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–744

    Article  CAS  PubMed  Google Scholar 

  • Abraham A (1956) Tapioca cultivation in India. Farm bulletin, no. 17. Indian Council of Agricultural Research, New Delhi, p 20

    Google Scholar 

  • Agrios GN (1978) Plant pathology, 2nd edn. Academic Press, Inc., San Diego, pp 466–470

    Google Scholar 

  • Alagianagalingam MN, Ramakrishnan K (1966) Cassava mosaic in India. South Indian Hortic 14:441–448

    Google Scholar 

  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238. https://doi.org/10.1186/s13059-015-0799-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Shan S, Zaidi A, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6:26912. https://doi.org/10.1038/srep26912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez PA, Abud-Antún AJ (1995) Reporte de Republica Dominicana. CEIBA (Honduras) 36:39–47

    Google Scholar 

  • Anandhi K, Khader KM (2011) Gene effects of fruit yield and leaf curl virus resistance in interspecific crosses of chilli (Capsicum annuum L. and C. frutescens L.). J Trop Agric 49:107–109

    Google Scholar 

  • Arora D, Jindal SK, Singh K (2008) Genetics of resistance to yellow vein mosaic virus in inter-varietal crosses of okra (Abelmoschus esculentus L. Moench). SABRAO J Breed Genet 40:93–103

    Google Scholar 

  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM et al (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145. https://doi.org/10.1038/nplants.2015.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa JC, Barreto SS, Inoue-Nagata AK, Reis MS, Firmino AC, Bergamin Filho A, Rezende JAM (2009) Natural infection of Nicandra physaloides by Tomato severe rugose virus in Brazil. J Gen Plant Pathol 75(6):440–443

    Article  Google Scholar 

  • Bellows TS, Kabashima JN, Robb K (2006) Pest notes: giant whitefly. UC ANR Publication, Oakland, p 7400

    Google Scholar 

  • Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33:351–357

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA (1999) When host choice is a problem for a generalist herbivore: experiments with the whitefly, Bemisia tabaci. Ecol Entomol 24:260–267

    Article  Google Scholar 

  • Berrie LC, Palmer KE, Rybicki EP, Rey MEC (1998) Molecular characterisation of a distinct south African cassava infecting geminivirus. Arch Virol 143:2253–2260

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar A, Pant RP, Sridhar J, Chakrabarti SK, Lal M (2017) Incidence of apical leaf curl disease (ToLCNDV), and economics and reaction of potato (Solanum tuberosum) cultivars against whitefly, Bemisia tabaci in northern India. Indian J Agric Sci 87:1673–1678

    CAS  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes EA, Aragao FJ (2007) RNAi mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Briddon RW, Pinner MS, Stanley J, Markham PG (1990) Geminivirus coat protein gene replacement alters insect specificity. Virology 177:85–94

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Bird J (1992) Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean basin. Plant Dis 76:220–225

    Article  Google Scholar 

  • Brown JK, Czosnek H (2002) Whitefly transmitted viruses. In: Advances in botanical research. Academic Press, New York, pp 65–100

    Google Scholar 

  • Caballero R, Rueda A (1993) Las moscas blancas en Honduras. In: Hilje L, Arboleda O (eds) Las moscas blancas (Homoptera: Aleyrodidae) en America Central y El Caribe Turrialba. CATIE, Costa Rica, pp 50–53

    Google Scholar 

  • Calvert LA, Thresh JM (2002) The viruses and virus diseases of Cassava. In: Thresh JM, Bellotti A (eds) Cassava: biology, production and utilization. CABI Publishing, Wallingford, pp 237–260

    Chapter  Google Scholar 

  • Chakraborty S, Pandey PK, Banerjee MK, Kalloo G, Fauquet CM (2003) Tomato leaf curl Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Phytopathology 93:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Vanitharani R, Chattopadhyay B, Fauquet CM (2008) Supervirulent pseudorecombination and asymmetric synergism between genomic components of two distinct species of begomovirus associated with severe tomato leaf curl disease in India. J Gen Virol 89:818–828

    Article  CAS  PubMed  Google Scholar 

  • Chatchawankanphanich O, Chiang B-T, Green SK, Singh SJ, Maxwell DP (1993) Nucleotide sequence of a geminivirus associated with tomato leaf curl from India. Plant Dis 77:1168

    Article  Google Scholar 

  • Chattopadhyay B, Singh AK, Yadev T, Fauquet CM, Sarin NB, Chakraborty S (2008) Infectivity of the cloned components of a begomovirus: DNA beta complex causing chilli leaf curl disease in India. Arch Virol 153:533–539

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004a) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611. https://doi.org/10.1007/s11103-004-0147-9

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2004b) Short interfering RNA accumulation correlates with host recovery in DNA virus infected hosts and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta OP (1984) Breeding okra for resistance to yellow vein mosaic virus and enation leaf curl virus. Annual Report Bangalore (India), IIHR

    Google Scholar 

  • Cohen S, Kern J, Harpaz I, Ben-Joseph R (1988) Epidemiological studies of the tomato yellow leaf curl virus (TYLCV) in the Jordan Valley, Israel. Phytoparasitica 16:259–270

    Article  Google Scholar 

  • Cooper JI, Harrison BD (1973) The role of weed hosts and the distribution and activity of vector nematodes on the ecology of tobacco rattle virus. Ann Appl Biol 73:53–66

    Article  CAS  PubMed  Google Scholar 

  • Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci U S A 88:6721–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM et al (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  CAS  PubMed  Google Scholar 

  • Deng D et al (1994) Detection and differentiation of whitefly-transmitted geminiviruses in plants and vector insects by the polymerase chain reaction with degenerate primers. Ann Appl Biol 125:327

    Google Scholar 

  • Dhankhar SK, Dhankhar BS, Yadava RK (2005) Inheritance of resistance to yellow vein mosaic virus in an inter-specific cross of okra (Abelmoschus esculentus). Indian J Agric Sci 75:87–89

    Google Scholar 

  • Dhanraj KS, Seth ML (1968) Enation in Capsicum annuum L. (chilli) caused by a new strain of leaf curl virus. Indian J Hort 25:70–71

    Google Scholar 

  • Duraisamy R, Natesan S, Muthurajan R, Gandhi K, Lakshmanan P, Karuppasamy N, Chokkappan M (2012) Molecular studies on the transmission of Indian cassava mosaic virus (ICMV) and Sri Lankan cassava mosaic virus (SLCMV) in cassava by Bemisia tabaci and cloning ICMV and SLCMV replicase gene from cassava. Mol Biotechnol 53:150. https://doi.org/10.1007/s12033-012-9503-1

    Article  CAS  Google Scholar 

  • Fajinmi AA, Fajinmi OB (2010) Incidence of okra mosaic virus at different growth stages of okra plants (Abelmoschus esculentus (L.) Moench) under tropical condition. J Gen Mol Virol 2:28–31

    Google Scholar 

  • Flint ML (1998) Pests of the garden and small farm, 2nd edn. UC ANR Publication, Oakland, p 3332

    Google Scholar 

  • Fondong VN (2017) The search for resistance to cassava mosaic geminiviruses: how much we have accomplished, and what lies ahead. Front Plant Sci 8:408. https://doi.org/10.3389/fpls.2017.00408

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg ID, Khurana SMP, Kumar S, Lakra BS (2001) Association of geminivirus with potato apical leaf curl in India, and its immune, electron microscopic detection. J Indian Potato Assoc 28:227–232

    Google Scholar 

  • Giri BK, Mishra MD (1986) National seminar on whitefly-transmitted plant virus diseases. New Delhi, IARI, p 22

    Google Scholar 

  • Girish KR, Usha R (2005) Molecular characterization of two soybean-infecting begomoviruses from India and evidence for recombination among legume-infecting begomoviruses from South-East Asia. Virus Res 108:167–176

    Article  CAS  PubMed  Google Scholar 

  • Govindu HC (1964) A review on virus disease of crop plants. Information pamphlet no. 2 (research series). Directorate of Agriculture, Bangalore, p 13

    Google Scholar 

  • Gray S, Cilia M, Ghanim M (2014) Circulative, “nonpropagative” virus transmission: anorchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 89:141–199

    Article  CAS  PubMed  Google Scholar 

  • Green SK, Tsai WS, Shih SL, Rezaian MA, Duangsong U (2003) Molecular characterization of a new begomovirus associated with tomato yellow leaf curl and eggplant yellow mosaic diseases in Thailand. Plant Dis 87:446

    Article  CAS  PubMed  Google Scholar 

  • Hamsa S, Girija D, Nazeem PA, Mathew SK, Deepa K, Balakrishnan S, Sumbula V (2016) Molecular characterization of geminivirus causing yellow vein mosaic in pumpkin. Int J Sci Environ Technol 5:133–147

    Google Scholar 

  • Harrison BD, Muniyappa V, Swanson MM, Roberts IM, Robinson DJ (1991) Recognition and differentiation of seven whitefly transmitted geminiviruses from India and their serological relationships to African cassava mosaic and Thailand mungbean yellow mosaic viruses. Ann Appl Biol 118:299–308

    Article  Google Scholar 

  • Hong YG, Harrison BD (1995) Nucleotide sequences from tomato leaf curl viruses from different countries: evidence for three geographically separate branches in the evolution of the coat protein of whitefly-transmitted geminiviruses. J Gen Virol 76:2043–2049

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Stanley J (1996) Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication associated (ACI) transgene. Mol Plant Micro Interact 9:219–225

    Article  CAS  Google Scholar 

  • Hong YG, Robinson DJ, Harrison BD (1993) Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted geminiviruses in cassava. J Gen Virol 74:2437–2443

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Sharma P, Kittipakorn K, Ikegami M (2008) Complete nucleotide sequence of a new isolate of tomato leaf curl New Delhi virus infecting cucumber, bottle gourd and muskmelon in Thailand. Arch Virol 153(3):611–613

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal N, Saritha RK, Datta D, Sing M, Dubey RS, Rai AB, Rai M (2011) Molecular characterization of tomato leaf curl Palampur virus and pepper leaf curl betasatellite naturally infecting pumpkin (Cucurbita moschata) in India. Indian J Virol 21:128–132

    Google Scholar 

  • Jambhale ND, Nerkar YS (1981) Inheritance of resistance to okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet 60:313–316. https://doi.org/10.1007/BF00263725

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144. https://doi.org/10.1038/nplants.2015.144

    Article  CAS  PubMed  Google Scholar 

  • Jindal SK, Dhaliwal MS, Sharma A, Thakur H (2019) Inheritance studies for resistance to leaf curl virus disease in chilli (Capsicum annuum L.). Agric Res J 55:757–760

    Article  Google Scholar 

  • John P, Sivalingam PN, Haq QMI, Kumar N, Mishra A, Briddon RW, Malathi VG (2008) Cowpea golden mosaic disease in Gujarat is caused by a Mungbean yellow mosaic India virus isolate with a DNA B variant. Arch Virol 153:1359–1365

    Article  CAS  PubMed  Google Scholar 

  • Jose J, Usha R (2003) Bhendi yellow vein mosaic disease in India is caused by association of a DNA ß satellite with a begomovirus. Virology 305:310–317. https://doi.org/10.1006/viro.2002.1768

    Article  CAS  PubMed  Google Scholar 

  • Kamaal N, Akram M, Pratap A, Yadav P (2013) Characterization of a new begomovirus and a beta satellite associated with the leaf curl disease of French bean in northern India. Virus Genes 46:120. https://doi.org/10.1007/s11262-012-0832-8

    Article  CAS  PubMed  Google Scholar 

  • Kamaal N, Akram M, Agnihotri AK (2015) Molecular evidence for the association of tomato leaf curl Gujarat virus with a leaf curl disease of Phaseolus vulgaris L. J Phytopathol 163:58–62. https://doi.org/10.1111/jph.12255

    Article  CAS  Google Scholar 

  • Kamau J, Sseruwagi P, Aritua V (2005) Whitefly and whitefly-borne viruses in the tropics. In: Anderson PK, Morales FJ (eds) Building a knowledge base for global action. CIAT, Columbia, pp 54–60

    Google Scholar 

  • Karthikeyan C, Patil BL, Borah BK, Resmi TR, Turco S, Pooggin MM, Hohn T, Veluthambi K (2016) Emergence of a latent Indian cassava mosaic virus from cassava which recovered from infection by a non-persistent Sri Lankan cassava mosaic virus. Viruses 8:264

    Article  CAS  PubMed Central  Google Scholar 

  • Khan JA, Siddiqui MR, Singh BP (2002) Association of begomovirus with bitter melon in India. Plant Dis 86:328

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Raj SK, Singh R (2006) First report of tomato leaf curl New Delhi virus infecting chili in India. Plant Pathol 55:289

    Article  Google Scholar 

  • Kirthi N, Maiya SP, Murthy MRN, Savithri HS (2002) Evidence for recombination among the tomato leaf curl virus strains/species from Bangalore, India. Arch Virol 147:255–272

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni CS (1924) Mosaic and other related diseases of crops in the Bombay Presidency. Poona Agriculture College Magazine, Pune

    Google Scholar 

  • Kumar Y, Hallan V, Zaidi AA (2008) Molecular characterization of a distinct bipartite begomovirus species infecting tomato in India. Virus Genes 37:425–431

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Kumar R, Kumar S, Singh M, Rai AB, Rai M (2009) Reaction of pepper leaf curl virus field resistance of chilli (Capsicum annuum L.) genotypes under challenged condition. Veg Sci 36:230–232

    Google Scholar 

  • Kumar Y, Hallan V, Zaidi AA (2011) Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite. Plant Pathol 60:1040–1047

    Article  CAS  Google Scholar 

  • Kumar A, Tiwari KL, Datta D (2014) Marker assisted gene pyramiding for enhanced tomato leaf curl virus disease resistance in tomato cultivars. Biol Plant 58:792–797. https://doi.org/10.1007/s10535-014-0449-y

    Article  CAS  Google Scholar 

  • Kumar RV, Singh D, Singh AK, Chakraborty S (2017) Molecular diversity, recombination and population structure of alphasatellites associated with begomovirus disease complexes. Infect Genet Evol 49:39–47

    Article  CAS  Google Scholar 

  • Kunik T, Salomon R, Zamir D, Navot N, Zeidan M et al (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Biotechnology (N Y) 12:500–504

    Article  CAS  Google Scholar 

  • Lakra BS (2003) Effect of date of planting on whitefly population, leaf curls incidence and yield of potato cultivars. J Indian Potato Assoc 30:115–116

    Google Scholar 

  • Legg JP, Gibson RW, Otim-Nape GW (1994) Genetic polymorphism amongst Ugandan populations of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), vector of African cassava mosaic geminivirus. Trop Sci 34:73–81

    Google Scholar 

  • Malathi VG, Varma A, Nambisan B (1989) Detection of Indian cassava mosaic virus by ELISA. Curr Sci 58:149–150

    Google Scholar 

  • Mandal B, Mandal S, Sohrab SS, Pun KB, Varma A (2002) A new yellow mosaic disease of chayote in India. New Dis Rep 9:22

    Google Scholar 

  • Mathew AV, Alice KJ (2002) Transmission, host range and etiology of mosaic disease of bitter gourd. Indian Phytopathol 55:219–220

    Google Scholar 

  • Matthew AV, Mathew J, Malathi GA (1991) Whitefly transmitted disease of bitter gourd. Indian Phytopathol 44:497–499

    Google Scholar 

  • Mehta D, Stürchler A, Hirsch M, Hoffmann Gruissem M, Vanderschuren H (2018) CRISPR-Cas9 interference in cassava linked to the evolution of editing-resistant geminiviruses. BioRxiv 314542. https://doi.org/10.1101/314542

  • Mishra MD, Raychaudhuri SP, Ashrafi J (1963) Virus causing leaf curl of chilli (Capsicum annuum L.). Indian J Microbiol 3(2):73–76

    Google Scholar 

  • Mishra SK, Chilakamarthi U, Deb JK, Mukherjee SK (2014) Unfolding of in planta activity of anti-rep ribozyme in presence of a RNA silencing suppressor. FEBS Lett 588:1967–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales FJ, Anderson PK (2001) The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch Virol 146(3):415–441

    Article  CAS  PubMed  Google Scholar 

  • Muniyappa V, Venkatesh HM, Ramappa HK, Kulkarni RS, Zeiden M, Tarba CY, Ghanim M, Czosnek H (2000) Tomato leaf curl virus from Bangalore (ToLCV-Ban4): sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships. Arch Virol 145:1583–1598

    Article  CAS  PubMed  Google Scholar 

  • Muniyappa V, Maruthi MN, Babitha CR, Colvin J, Briddon RW, Rangaswamy KT (2003) Characterization of pumpkin yellow vein mosaic virus from India. Ann Appl Biol 142:323–331

    Article  Google Scholar 

  • Murant AF, Taylor CE (1965) Treatment of soils with chemicals to prevent transmission of tomato black ring and raspberry ring spot viruses by Longidorus elongatus (de Man). Ann Appl Biol 55:227–237

    Article  CAS  Google Scholar 

  • Nagendran K, Mohankumar S, Manoranjitham SK, Karthikeyan G (2014) Molecular detection and characterization of Tomato leaf curl New Delhi virus causing mosaic disease on bitter gourd in Tamil Nadu, India. Trends Biosci 7(23):3925–3931

    Google Scholar 

  • Nagendran K, Satya VK, Mohankumar S, Karthikeyan G (2016) Molecular characterization of a distinct bipartite begomovirus species infecting ivy gourd (Coccinia grandis L.) in Tamil Nadu, India. Virus Genes 52:146–151. https://doi.org/10.1007/s11262-015-1278-6

    Article  CAS  PubMed  Google Scholar 

  • Nagendran K, Mohankumar S, Aravintharaj R, Balaji CG, Manoranjitham SK, Singh AK, Rai AB, Singh B, Karthikeyan G (2017) The occurrence and distribution of major viruses infecting cucurbits in Tamil Nadu state, India. Crop Prot 99:10–16. https://doi.org/10.1016/j.cropro.2017.05.006

    Article  Google Scholar 

  • Namrata J, Saritha RK, Datta D, Singh M, Dubey RS, Rai AB, Rai M (2010) Molecular characterization of tomato leaf curl Palampur virus and pepper leaf curl betasatellite naturally infecting pumpkin (Cucurbita moschata) in India. Indian J Virol 21:128–132

    Article  PubMed  Google Scholar 

  • Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S et al (1996) Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology 224:130–138

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Mukhopadhyay S, Naqvi AR, Mukherjee SK, Shekhawat GS, Choudhury NR (2010) Molecular characterization of two distinct monopartite begomoviruses infecting tomato in India. Virol J 7:337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil BL, Rajasubramaniam S, Bagchi C, Dasgupta I (2005) Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Arch Virol 150:389–397

    Article  CAS  PubMed  Google Scholar 

  • Phaneendra C, Rao KRSS, Jain RK, Mandal B (2012) Tomato leaf curl New Delhi virus is associated with pumpkin leaf curl: a new disease in northern India. Indian J Virol 23:42–45

    Article  PubMed  Google Scholar 

  • Prasanna HC, Sinha DP, Rai GK, Krishna R, Kashyap SP, Singh NK, Singh M, Malathi VG (2015) Pyramiding Ty-2 and Ty-3 genes for resistance to monopartite and bipartite tomato leaf curl viruses of India. Plant Pathol 64:256–264

    Article  CAS  Google Scholar 

  • Pratap D, Kashikar AR, Mukherjee SK (2011) Molecular characterization and infectivity of a tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virol J 8:305

    Article  PubMed  PubMed Central  Google Scholar 

  • Praveen S, Kushwaha CM, Mishra AK, Singh V, Jain RK, Varma A (2005a) Engineering tomato for resistance to tomato leaf curl disease using viral rep gene sequences. Plant Cell Tissue Organ Cult 83:311–318

    Article  Google Scholar 

  • Praveen S, Mishra AK, Dasgupta A (2005b) Antisense suppression of replicase gene expression recovers tomato plants from leaf curl infection. Plant Sci 168:1011–1014

    Article  CAS  Google Scholar 

  • Pullaiah N, Reddy BT, Moses GJ, Reddy BM, Reddy RD (1998) Inheritance of resistance to yellow vein mosaic virus in okra (Abelmoschus esculentus (L.) Moench). Indian J Genet Plant Breed 58:349–352

    CAS  Google Scholar 

  • Rai VP, Rai AC, Kumar S, Kumar R, Kumar S, Singh M, Rai AB, Singh SP (2010) Emergence of new variant of chilli leaf curl virus in North India. Veg Sci 37:124–128

    Google Scholar 

  • Rai VP, Kumar R, Singh SP, Kumar S, Kumar S, Singh M, Rai M (2014) Monogenic recessive resistance to pepper leaf curl virus in an interspecific cross of capsicum. Sci Hortic 172:34–38

    Article  Google Scholar 

  • Raj SK, Singh BP (1996) Association of geminivirus infection with yellow green mosaic disease of Cucumis sativus: diagnosis by nucleic acid probes. Indian J Exp Biol 34:603–605

    CAS  PubMed  Google Scholar 

  • Raj SK, Singh R, Pandey SK, Singh BP (2005a) Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection. Curr Sci 88:1675–1679

    Google Scholar 

  • Raj SK, Khan MS, Singh R, Kumari N, Praksh D (2005b) Occurrence of yellow mosaic geminiviral disease on bitter gourd (Momordica charantia) and its impact on phytochemical contents. Int J Food Sci Nutr 56:185–192

    Article  CAS  PubMed  Google Scholar 

  • Raj SK, Snehi SK, Khan MS, Tiwari AK, Rao GP (2010) First report of pepper leaf curl Bangladesh virus strain associated with bitter gourd (Momordica charantia L.) yellow mosaic disease in India. Aust Plant Dis Notes 5:14–16

    Article  CAS  Google Scholar 

  • Raj SK, Snehi SK, Khan MS, Tiwari AK, Rao GP (2011) First molecular characterization of Ageratum enation virus associated with mosaic disease of pointed gourd (Trichosanthes dioica Roxb.) in India. Phytoparasitica 39:497–502

    Article  Google Scholar 

  • Rajinimala N, Rabindran R (2007) First report of Indian cassava mosaic virus on bittergourd (Momordica charantia) in Tamil Nadu, India. Aust Plant Dis Notes 2:81–82

    Article  Google Scholar 

  • Rajinimala N, Rabindran R, Ramiah M, Kamalakannan A, Mareeswari P (2005) Virus–vector relationship of bittergourd yellow mosaic virus and the whitefly Bemisia tabaci Genn. Acta Phytopathol Entomol Hung 40:23–30

    Article  Google Scholar 

  • Ramanujam B, Rangeshwaran R, Sivakumar G, Mohan M, Yandigeri MS (2014) Management of insect pests by microorganisms. Proc Indian Natn Sci Acad 80:455–471

    Article  Google Scholar 

  • Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri SP, Verma JP (1977) Therapy by heat, radiation and meristem culture. In: Horsfall JG, Cowling EB (eds) Plant diseases-an advanced treatise, vol 1. Academic Press, New York, pp 1–464

    Google Scholar 

  • Rist DL, Lorbeer JW (1989) Occurrence and overwintering of cucumber mosaic virus and broad bean wilt virus in weeds growing near commercial lettuce fields in New York. Phytopathology 79:65–69

    Article  Google Scholar 

  • Rojas MR, Gilbertson RL, Russel DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly transmitted geminiviruses. Plant Dis 77:340–347

    Article  CAS  Google Scholar 

  • Rothenstein D, Haible D, Dasgupta I, Dutt N, Patil BL, Jeske H (2006) Biodiversity and recombination of cassava-infecting begomoviruses from southern India. Arch Virol 151:55–69

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Spoorthi P, Panwar G, Bag MK, Prasad TV, Kumar G, Gangopadhyay KK, Dutta M (2013) Molecular evidence for occurrence of Tomato leaf curl New Delhi virus in ash gourd (Benincasa hispida) germplasm showing a severe Yellow Stunt disease in India. Indian J Virol 24(1):74–77

    Article  PubMed  Google Scholar 

  • Rybicki EP, Pietersen G (1999) Plant virus disease problems in the developing world. Adv Virus Res 53:127–175

    Article  CAS  PubMed  Google Scholar 

  • Sadashiva AT, Hanson P, Reddy MK, Ravishankar KV, Prasad M, Prasanna HC, Reddy MK, Singh TH, Saritha RK, Hussain Z, Mythili JB, Shivashankara KS, Bhatt RM, Laxman RH, Tiwari RB, Sridhar V, Sowmya V, Kumar NP, Kumar M, Kaushal A, Rai AK, Jatav V, Bhat L (2017) Breeding tomato (Solanum lycopersicum L.) for resistance to biotic and abiotic stresses. J Hortic Sci 12:91–105

    Google Scholar 

  • Saikia AK, Muniyappa V (1989) Epidemiology and control of tomato leaf curl virus in southern India. Trop Agric 66:350–354

    Google Scholar 

  • Salati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J, Maxwell D, Gilbertson RL (2002) Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies and the identification of reservoir hosts. Phytopathology 92:487–496

    Article  PubMed  Google Scholar 

  • Sanwal SK, Singh M, Singh B, Naik PS (2014) Resistance to yellow vein mosaic virus and okra enation leaf curl virus: challenges and future strategies. Curr Sci 106:470–1471

    Google Scholar 

  • Sastry KS, Singh SJ (1973) Assessment of losses in tomato by tomato leaf curl virus. Indian J Mycol Plant Pathol 3:50–54

    Google Scholar 

  • Saunders K, Bedford ID, Stanley J (2002) Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. J Gen Virol 83:907–913

    Article  CAS  PubMed  Google Scholar 

  • Scott JW, Hutton SF, Freeman JH (2015) Fla. 8638B and Fla. 8624 tomato breeding lines with begomovirus resistance genes Ty-5 plus Ty-6 and Ty-6, respectively. HortScience 50:1405–1407

    Article  CAS  Google Scholar 

  • Senanayake DMJB, Mandal B, Lodha S, Varma A (2006) First report of chilli leaf curl virus affecting chilli in India. New Dis Rep 13:27

    Google Scholar 

  • Senanayake DMJB, Mandal B, Lodha S, Varma A (2007) First report of chilli leaf curl virus affecting chilli in India. Plant Pathol 56:343

    Article  Google Scholar 

  • Senanayake DMJB, Varma A, Mandal BJ (2012) Virus–vector relationships, host range, detection and sequence comparison of chilli leaf curl virus associated with an epidemic of leaf curl disease of chilli in Jodhpur. Indian Phytopathol 160:146–155

    Article  CAS  Google Scholar 

  • Seth T, Chattopadhyay A, Dutta S, Hazra P, Singh B (2017) Genetic control of yellow vein mosaic virus disease in okra and its relationship with biochemical parameters. Euphytica 213:30. https://doi.org/10.1007/s10681-016-1789-9

    Article  CAS  Google Scholar 

  • Sharma BR, Dhillon TS (1983) Genetics of resistance to yellow vein mosaic virus in interspecific crosses of okra. Genet Agrar 37:267–275

    Google Scholar 

  • Sharma BR, Sharma DP (1984) Breeding for resistance to yellow vein mosaic virus in okra. Indian J Agric Sci 54:917–920

    Google Scholar 

  • Shih SL, Tsai WS, Green SK, Singh D (2007) First report of tomato leaf curl Joydebpur virus infecting chilli in India. Plant Pathol 56:341

    Article  Google Scholar 

  • Shukla AK, Upadhyay SK, Mishra M, Saurabh S, Singh R, Singh H, Thakur N, Rai P, Pandey P, Hans AL, Srivastava S, Rajapure V, Yadav SK, Singh MK, Kumar J, Chandrashekar K, Verma PC, Singh AP, Nair KN, Bhadauria S, Wahajuddin M, Singh S, Sharma S, Omkar URS, Ranade SA, Tuli R, Singh PK (2016) Expression of an insecticidal fern protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Singh SJ (1996) Assessment of losses in okra due to enation leaf curl virus. Indian J Virol 12:51–53

    Google Scholar 

  • Singh HB, Joshi BS, Khanna PP, Gupta PS (1962) Breeding for field resistance to yellow vein mosaic in bhindi. Indian J Genet Plant Breed 22:137–138

    Google Scholar 

  • Singh SK, Chakraborty S, Singh AK, Pandey PK (2006) Cloning, restriction mapping and phylogenetic relationship of genomic components of MYMIV from Lablab purpureus. Bioresource Tech 97:1807–1814

    Article  CAS  Google Scholar 

  • Singh R, Raj SK, Prasad V (2007) Molecular identification of a new strain of squash leaf curl China virus infecting Cucurbita maxima in India. J Phytopathol 156:222–228

    Article  CAS  Google Scholar 

  • Singh A, Taneja J, Dasgupta I, Mukherjee SK (2015) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16(7):24–734

    Article  CAS  Google Scholar 

  • Sivalingam PN, Malathi VG, Varma A (2010) Molecular diversity of the DNA-β satellites associated with tomato leaf curl disease in India. Arch Virol 155:757–764

    Article  CAS  PubMed  Google Scholar 

  • Snehi SK, Raj SK, Prasad V, Singh V (2015) Recent research findings related to management strategies of begomoviruses. J Plant Pathol Microbiol 6:273. https://doi.org/10.4172/2157-7471.1000273

    Article  CAS  Google Scholar 

  • Sohrab SS, Mandal B, Pant RP, Varma A (2003) First report of association of tomato leaf curl New Delhi virus with the yellow mosaic disease of Luffa cylindrica. Plant Dis 87:1148

    Article  CAS  PubMed  Google Scholar 

  • Sohrab SS, Mandal B, Ali A, Varma A (2010) Chlorotic curly stunt: a severe begomovirus disease of bottle gourd in northern India. Indian J Virol 21:56–63. https://doi.org/10.1007/s13337-010-0002-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava KM, Hallan V, Raizada RK, Chandra G, Singh BP, Sane PV (1995) Molecular cloning of Indian tomato leaf curl virus genome following a simple method of concentrating the supercoiled replicative form of DNA. J Virol Methods 51:297–304

    Article  CAS  PubMed  Google Scholar 

  • Sseruwagi P, Maruthi MN, Colvin J, Rey MEC, Brown JK, Legg JP (2006) Colonization of non cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomol Exp Appl 119:145–153

    Article  CAS  Google Scholar 

  • Stansly PA, Naranjo SE (2010) Bemisia: bionomic and management of a global pest. Springer, New York

    Book  Google Scholar 

  • Tahir M, Haider MS, Briddon RW (2010) Complete nucleotide sequences of a distinct bipartite begomovirus, bitter gourd yellow vein virus, infecting Momordica charantia. Arch Virol 155:1901. https://doi.org/10.1007/s00705-010-0819-5

    Article  CAS  PubMed  Google Scholar 

  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13(10):e1525996. https://doi.org/10.1080/15592324.2018.1525996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari AK, Sharma PK, Khan MS, Snehi SK, Raj SK, Rao GP (2010a) Molecular detection and identification of Tomato leaf curl New Delhi virus isolate causing yellow mosaic disease in bitter gourd (Momordica charantia), a medicinally important plant in India. Med Plants 2:117–123

    Google Scholar 

  • Tiwari N, Padmalatha KV, Singh VB, Haq QMI, Malathi VG (2010b) Tomato leaf curl Bangalore virus (ToLCBV): infectivity and enhanced pathogenicity with diverse betasatellites. Arch Virol 155:1343–1347

    Article  CAS  PubMed  Google Scholar 

  • Tiwari AK, Snehi SK, Khan MS, Sharma PK, Raj SK, Rao GP (2012a) Molecular detection and identification of tomato leaf curl New Delhi virus associated with yellow mosaic and leaf curl disease of Luffa cylindrica in India. Indian Phytopathol 65:80–84

    Google Scholar 

  • Tiwari AK, Snehi SK, Khan MS, Sharma PK, Raj SK, Rao GP (2012b) Molecular detection and identification of Tomato leaf curl New Delhi virus associated with yellow mosaic and leaf curling disease of Luffa cylindrica crops in India. Indian Phytopathol 65:48–55

    Google Scholar 

  • Tomar G, Chakrabarti SK, Sharma NN, Jeevalatha A, Sundaresha S, Vyas K, Azmi W (2018) RNAi-based transgene conferred extreme resistance to the geminivirus causing apical leaf curl disease in potato. Plant Biotechnol Rep 12:195. https://doi.org/10.1007/s11816-018-0485-8

    Article  Google Scholar 

  • Uppal BN (1933) India: disease in the Bombay Presidency. Int Bull Pl Protect 7:103–104

    Google Scholar 

  • Uppal BN, Varma PM, Capoor SP (1940) Yellow vein mosaic of bhendi. Curr Sci 9:227–228

    Google Scholar 

  • Usharani KS, Surendranath B, Haq QMR, Malathi VG (2004a) Yellow mosaic virus infecting soybean in northern India is distinct from the species infecting soybean in southern and western India. Curr Sci 86:845–850

    CAS  Google Scholar 

  • Usharani KS, Surendranath B, Paul-Khurana SM, Garg ID, Malathi VG (2004b) Potato leaf curl—a new disease of potato in northern India caused by a strain of tomato leaf curl New Delhi virus. Plant Pathol 53:235–235

    Article  Google Scholar 

  • Vanderschuren H, Akbergenov R, Pooggin MM, Hohn T, Gruissem W (2007) Transgenic cassava resistance to African cassava mosaic virus is enhanced by viral DNA-A bidirectional promoter-derived siRNAs. Plant Mol Biol 64:549–557

    Article  CAS  PubMed  Google Scholar 

  • Varma PM (1955) Ability of the whitefly to carry more than one virus simultaneously. Curr Sci 24:317–318

    Google Scholar 

  • Varma JP (1959) Tomato leaf curl. In: ICAR Proceedings Seminar on Disease of Horticulture Plants, Simla, pp 182–200

    Google Scholar 

  • Varma A, Dhar AK, Mandal B (1992) MYMV transmission and control in India. In: Green SK, Kim D (eds) Mungbean yellow mosaic disease. Asian Vegetable Research and Development Centre, Taipei, pp 8–27

    Google Scholar 

  • Vashisht VK, Sharma BR, Dhillon GS (2001) Genetics of resistance to yellow vein mosaic virus in okra. J Crop Improv 28:218–225

    Google Scholar 

  • Vasudeva RS (1954) Report of the division of mycology and plant pathology. Science Reporter Indian Agricultural Research Institute, New Delhi 1952–1953, p 79–89

    Google Scholar 

  • Vasudeva RS, Lal TB (1943) A mosaic disease of bottle gourd. Indian J Agric Sci 13:182–191

    Google Scholar 

  • Vasudeva RS, Sam Raj J (1948) A leaf curl disease of tomato. Phytopathology 38:364–369

    Google Scholar 

  • Venkataravanappa V, Reddy CNL, Jalali S, Reddy MK (2012) Molecular characterization of distinct bipartite begomovirus infecting bhendi (Abelmoschus esculentus L.) in India. Virus Genes 44:522–535. https://doi.org/10.1007/s11262-012-0732-y

    Article  CAS  PubMed  Google Scholar 

  • Venkataravanappa V, Reddy CNL, Jalali S, Briddon RW, Reddy MK (2015) Molecular identification and biological characterisation of a begomovirus associated with okra enation leaf curl disease in India. Eur J Plant Pathol 141(2):217–235

    Article  CAS  Google Scholar 

  • Venkataravanappa V, Narasimha Reddy LRC, Saha S, Subbanna SK, Manem KR (2018) Detection and characterization of tomato leaf curl New Delhi virus association with mosaic disease of ivy gourd (Coccinia grandis (L.) Voigt) in North India. Arch Biol Sci 70:339–347

    Article  Google Scholar 

  • Venkatasalam EP, Singh S, Gawande SJ, Malathi VG (2005) Detection of whitefly transmitted geminivirus associated with potato apical leaf curl virus by biological and molecular tools. Proceedings of the Annual Meeting of Indian Society of Plant Pathologists and Centenary Symposium on Plant Pathology; 7–8 Apr 2005; Central Potato Research Institute. p 18

    Google Scholar 

  • Venkatasalam EP, Pandey KK, Singh V, Singh BP (2011) Seed potato production technology. ICAR-CPRI, Shimla, 57 p

    Google Scholar 

  • Wang L, Wei X, Ye X, Xu H, Zhou X, Liu S, Wang X (2014) Expression and functional characterization of a soluble form of tomato yellow leaf curl virus coat protein. Pest Manag Sci 70:1624–1631

    Article  CAS  PubMed  Google Scholar 

  • Wei J, He YZ, Guo Q, Guo T, Liu YQ, Zhou XP, Liu SS, Wang XW (2017) Vector development and vitellogenin determine the transovarial transmission of begomoviruses. Proc Natl Acad Sci U S A 114:6746–6751. https://doi.org/10.1073/pnas.1701720114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood GAR, Lass RA (2001) Cacao, 4th edn. Blackwell, Oxford, p 620

    Google Scholar 

  • Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean yellow mosaic India virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    Article  CAS  PubMed  Google Scholar 

  • Yasmin S, Raja NI, Hameed S, Brown JK (2017) First Association of Pedilanthus leaf curl virus, Papaya leaf curl virus, Cotton leaf curl Kokharan virus, and Papaya leaf curl betasatellite associated with Symptomatic Chilli Pepper in Pakistan. Plant Dis 101(12):2155

    Article  Google Scholar 

  • Zaim M, Kumar Y, Hallan V, Zaidi AA (2011) Velvet bean severe mosaic virus: a distinct begomovirus species causing severe mosaic in Mucuna pruriens (L.) DC. Virus Genes 43(1):138–146

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagar, V., Karmakar, P., Devi, J., Gupta, N., Meena, B.R. (2020). Begomovirus Menace and Its Management in Vegetable Crops. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_26

Download citation

Publish with us

Policies and ethics