Skip to main content

Information Encoding, Gap Detection and Analysis from 2D LiDAR Data on Android Environment

  • Conference paper
  • First Online:
Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1082))

Abstract

Most commercial uses of LiDAR prefer high-end LiDAR systems with equally sophisticated software packages that have limited accessibility due to cost or complexity. Our purpose for developing this LiDAR point classification framework is to develop a flexible method for visualizing and processing LiDAR data that is simple and cost-effective, and yet achieves a similar degree of functionality as that of its high-end peers. To that end, we have classified data points from a LiDAR-Lite V2 (Blue Label) to represent the distance and height of obstacles, and the gaps between them. This will enable an autonomous mobile agent to determine palatable paths through the satisfactory gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amadeo, R.: Google’s waymo invests in lidar technology, cuts costs by 90 percent. https://arstechnica.com/cars/2017/01/googles-waymo-invests-in-lidar-technology-cuts-costs-by-90-percent/ (2017)

  2. Arjun, R., Reddy, P.: Research on the optimization of dijkstra’s algorithm and its applications. Int. J. Sci. Technol. Manag. 4(1), 304–309 (2015)

    Google Scholar 

  3. Carballo, A., Ohya, A., et al.: People detection using range and intensity data from multi-layered laser range finders. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5849–5854. IEEE (2010)

    Google Scholar 

  4. Catapang, A.N., Ramos, M.: Obstacle detection using a 2d lidar system for an autonomous vehicle. In: 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 441–445. IEEE (2016)

    Google Scholar 

  5. Condliffe, J.: Lidar just got way better-but it’s still too expensive for your car. https://www.technologyreview.com/s/609526/lidar-just-got-way-better-but-its-still-too-expensive-for-your-car/amp/ (2017)

  6. Evans, J.S., Hudak, A.T., Faux, R., Smith, A.: Discrete return lidar in natural resources: recommendations for project planning, data processing, and deliverables. Remote. Sens. 1(4), 776–794 (2009)

    Article  Google Scholar 

  7. Graphview—open source graph plotting library for android. http://www.android-graphview.org/

  8. Hancock, J.A.: Laser intensity-based obstacle detection and tracking. Technical report, Carnegie Mellon University (1999)

    Google Scholar 

  9. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.H., Loye, A., Metzger, R., Pedrazzini, A.: Use of lidar in landslide investigations: a review. Nat. Hazards 61(1), 5–28 (2012)

    Article  Google Scholar 

  10. Kasperski, J., Delacourt, C., Allemand, P., Potherat, P., Jaud, M., Varrel, E.: Application of a terrestrial laser scanner (tls) to the study of the séchilienne landslide (isère, france). Remote. Sens. 2(12), 2785–2802 (2010)

    Article  Google Scholar 

  11. Kirchner, A., Heinrich, T.: Model based detection of road boundaries with a laser scanner. In: Proceedings of IEEE International Symposium on Intelligent Vehicles, pp. 93–98. Citeseer (1998)

    Google Scholar 

  12. Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer, D., Pink, O., Pratt, V., et al.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168. IEEE (2011)

    Google Scholar 

  13. Li, S., MacMillan, R., Lobb, D.A., McConkey, B.G., Moulin, A., Fraser, W.R.: Lidar dem error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada. Geomorphology 129(3–4), 263–275 (2011)

    Article  Google Scholar 

  14. Liu, S.K.M.L.Y., Furcy, D.: Incremental heuristic search in artificial intelligence

    Google Scholar 

  15. Mannor, S., Meir, R., Zhang, T.: Greedy algorithms for classification–consistency, convergence rates, and adaptivity. J. Mach. Learn. Res. 4, 713–742 (2003)

    Google Scholar 

  16. Moon, H.C., Kim, J.H., Kim, J.H.: Obstacle detecting system for unmanned ground vehicle using laser scanner and vision. In: International Conference on Control, Automation and Systems. ICCAS’07, pp. 1758–1761. IEEE (2007)

    Google Scholar 

  17. Redweik, P., Catita, C., Brito, M.: Solar energy potential on roofs and facades in an urban landscape. Sol. Energy 97, 332–341 (2013)

    Article  Google Scholar 

  18. Sharma, S.K., Pal, B.: Shortest path searching for road network using a* algorithm. Int. J. Comput. Sci. Mob. Comput. 4(7), 513–522

    Google Scholar 

  19. Webster, T.L.: Flood risk mapping using lidar for annapolis royal, nova scotia, canada. Remote. Sens. 2(9), 2060–2082 (2010)

    Article  Google Scholar 

  20. Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.C.: The role of lidar in sustainable forest management. For. Chron. 84(6), 807–826 (2008)

    Article  Google Scholar 

  21. Zhevlakov, A., Bespalov, V., Elizarov, V., Grishkanich, A.S., Kascheev, S., Makarov, E., Bogoslovsky, S., Il’inskiy, A.: Hydrocarbon halo-laser spectroscopy for oil exploration needs. In: Optical Sensing and Detection III, vol. 9141, p. 914125. International Society for Optics and Photonics (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Phukan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phukan, A., Phukan, P., Sinha, R., Hazarika, S., Boruah, A. (2020). Information Encoding, Gap Detection and Analysis from 2D LiDAR Data on Android Environment. In: Pati, B., Panigrahi, C., Buyya, R., Li, KC. (eds) Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1082. Springer, Singapore. https://doi.org/10.1007/978-981-15-1081-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1081-6_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1080-9

  • Online ISBN: 978-981-15-1081-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics