Skip to main content

Modified Histogram Segmentation Bi-Histogram Equalization

  • Conference paper
  • First Online:
Advanced Computing and Intelligent Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1082))

  • 773 Accesses

Abstract

In the application of image processing, contrast enhancement is a major step. Conventional methods which are studied in contrast enhancement such as Histogram Equalization (HE) have not satisfactory results on many different low-contrast images and they also cannot automatically handle different images. These problems result of specifying parameters manually in order to produce high contrast images. In this paper, Modified Histogram Segmentation Bi-Histogram Equalization (MHSBHE) is proposed. In this study, histogram is modified before segmentation to improve the input image contrast. The proposed method accomplishes multi goals of preserving brightness, retaining the shape features of the original histogram and controlling excessive enhancement rate, suiting for applications of consumer electronics. MHSBHE avoids over-enhancement and generates images with natural improvement. Simulation results show that in terms of visual assessment, peak signal-to-noise (PSNR), average information content (entropy) and Absolute Mean Brightness Error (AMBE) the proposed method has better results compared to literature methods. The proposed method enhances the natural appearance of images especially in no static range images and the improved image is helpful in generation of the consumer electronic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madadizadeh, F., Bahrampour, A., Mousavi, S.M., Montazeri, M.: Using advanced statistical models to predict the non-communicačble diseases. Iranian J. Public Health 44(12), 1714–1715 (2015)

    Google Scholar 

  2. Ehtemam, H., Montazeri, M., Khajouei, R., Hosseini, R., Nemati, A., Maazed, V.: Prognosis and early diagnosis of ductal and lobular type in breast cancer patient. Iranian J. Public Health 46(11), 1563 (2017)

    Google Scholar 

  3. Montazeri, M., Naji, H.R., Faraahi, A.: A novel memetic feature selection algorithm, pp. 295–300

    Google Scholar 

  4. Montazeri, M., Naji, H.R., Montazeri, M.: Memetic feature selection algorithm based on efficient filter local search. J. Basic Appl. Sci. Res. 3(10), 126–133 (2013)

    Google Scholar 

  5. Madadizadeh, F., Asar, M.E., Bahrampour, A., Montazeri, M.: Liver Disease Recognition: A Discrete Hidden Markov Model Approach (2016)

    Google Scholar 

  6. Madadizadeh, F., Montazeri, M., Bahrampour, A.: Predicting the survival in breast cancer using hidden Markov model, pp. 228–228

    Google Scholar 

  7. Madadizadeh, F., Montazeri, M., Bahrampour, A.: Predicting of liver disease using hidden Markov model. Razi J. Med. Sci. 23(146), 66–74 (2016)

    Google Scholar 

  8. Mitra, M., Bahrololoum, A., Nezamabadi-pour, H., Baghshah, M.S., Montazeri, M.: Cooperating of Local Searches based Hyperheuristic Approach for Solving Traveling Salesman Problem, pp. 329–332

    Google Scholar 

  9. Montazeri, M.: HHFS: Hyper-heuristic feature selection. Intell. Data Anal. 20(4), 953–974 (2016)

    Article  Google Scholar 

  10. Montazeri, M., Baghshah, M.S., Niknafs, A.: Selecting efficient features via a hyper-heuristic approach (2016). arXiv:1601.05409

  11. Montazeri, M., Naji, H.R., Montazeri, M., Faraahi, A.: A novel memetic feature selection algorithm, pp. 295–300

    Google Scholar 

  12. Montazeri, M., Nezamabadi-pour, H., Bahrololoum, A.: Exploring and exploiting effectively based hyper-heuristic approach for solving travelling salesman problem

    Google Scholar 

  13. Abbasi, R., Montazeri, M., Zare, M.: A Rule Based Classification Model to Predict Colon Cancer Survival

    Google Scholar 

  14. Montazeri, M., Baghshah, M.S., Enhesari, A.: Hyper-Heuristic algorithm for finding efficient features in diagnose of lung cancer disease (2015). arXiv:1512.04652

  15. Montazeri, M., Montazeri, M.: Machine learning models for predicting the diagnosis of liver disease. Koomesh 16(1), 53–59 (2014)

    Google Scholar 

  16. Montazeri, M., Montazeri, M., Beygzadeh, A., Zahedi, M.J.: Identifying efficient clinical parameters in diagnose of liver disease. Health MED 8(10), 1115 (2014)

    Google Scholar 

  17. Montazeri, M., Montazeri, M., Montazeri, M.: Future studies in health care: a new approach in intelligent diagnosis of liver disease by selecting the best decision tree model

    Google Scholar 

  18. Montazeri, M., Montazeri, M., Montazeri, M., Bahrampour, A.: Can Breast Cancer Survival be predicted by Risk Factors? Machine Learning Models. pp. 301–301

    Google Scholar 

  19. Montazeri, M., Montazeri, M., Montazeri, M., Beigzadeh, A.: Machine learning models in breast cancer survival prediction. In: Technology and Health Care, no. Preprint, pp. 1–12 (20150

    Google Scholar 

  20. Montazeri, M., Bahaadinbeigy, K., Rahnama, Z., Montazeri, M.: Comparison of the accuracy of digital image-based and patient visit-based diagnoses in an Iranian dermatology clinic. J. Basic Appl. Sci. Res. 3(11), 28–33 (2013)

    Google Scholar 

  21. Montazeri, M., Montazeri, M., Saryazdi, S.: Eye detection in digital images: challenges and solutions (2016). arXiv:1601.04871

  22. Montazeri, M., Nezamabadi-pour, H.: Automatic extraction of eye field from a gray intensity image using intensity filtering and hybrid projection function. pp. 1–5

    Google Scholar 

  23. Montazeri, M., Nezamabadi-pour, H., Montazeri, M.: Automatically eye detection with different gray intensity image conditions. Comput. Technol. Appl. 3(8) (2012)

    Google Scholar 

  24. Montazeri, M.: Intensity adjustment and noise removal for medical image enhancement. J. Health Biomed. Inform. 3(1), 38–47 (2016)

    Google Scholar 

  25. Yu, Z., Bajaj, C.: A Fast and Adaptive Method for Image Contrast Enhancement. pp. 1001–1004

    Google Scholar 

  26. Parihar, A.S., Verma, O.P., Khanna, C.: Fuzzy-contextual contrast enhancement. IEEE Trans. Image Process. 26(4), 1810–1819 (2017)

    Article  MathSciNet  Google Scholar 

  27. Parihar, A.S., Verma, O.P.: Contrast enhancement using entropy-based dynamic sub-histogram equalisation. IET Image Proc. 10(11), 799–808 (2016)

    Article  Google Scholar 

  28. Chang, Y., Jung, C., Ke, P., Song, H., Hwang, J.: Automatic contrast-limited adaptive histogram equalization with dual gamma correction. IEEE Access 6, 11782–11792 (2018)

    Article  Google Scholar 

  29. Chen, S.-D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  30. Kim, Y.-T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  31. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  32. Singh, K., Kapoor, R.: Image enhancement using exposure based sub image histogram equalization. Pattern Recogn. Lett. 36, 10–14 (2014)

    Article  Google Scholar 

  33. Singh, K., Kapoor, R., Sinha, S.K.: Enhancement of low exposure images via recursive histogram equalization algorithms. Optik-Int. J. Light Electron Opt. 126(20), 2619–2625 (2015)

    Article  Google Scholar 

  34. Singh, K., Kapoor, R.: Image enhancement via median-mean based sub-image-clipped histogram equalization. Optik-Int. J. Light Electron Opt. 125(17), 4646–4651 (2014)

    Article  Google Scholar 

  35. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  36. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, p. 954. Prentice Hall (2008)

    Google Scholar 

  37. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn., pp. 85–103. Addison-Wesley,Reading, MA (1992)

    Google Scholar 

  38. Wan, M., Gu, G., Qian, W., Ren, K., Chen, Q., Maldague, X.: Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement. Infrared Phys. Technol. 91, 164–181 (2018)

    Article  Google Scholar 

  39. Zhou, X.-B., Wen, Y.-C., Jin, Y.-F., Syu, S.-S., Jou, M.-J.: P‐57: A Local Histogram Framework for Contrast Enhancement. pp. 1410–1413

    Google Scholar 

  40. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998)

    Article  Google Scholar 

  41. Caselles, V., Lisani, J.-L., Morel, J.-M., Sapiro, G.: Shape preserving local histogram modification. IEEE Trans. Image Process. 8(2), 220–230 (1999)

    Article  Google Scholar 

  42. Kim, J.-Y., Kim, L.-S., Hwang, S.-H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)

    Article  Google Scholar 

  43. Gautam, G., Mukhopadhyay, S.: Efficient contrast enhancement based on local–global image statistics and multiscale morphological filtering. In: Advanced Computational and Communication Paradigms, pp. 229–238. Springer, Berlin (2018)

    Google Scholar 

  44. Kim, M., Chung, M.G.: Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement. IEEE Trans. Consum. Electron. 54(3) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitra Montazeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Montazeri, M. (2020). Modified Histogram Segmentation Bi-Histogram Equalization. In: Pati, B., Panigrahi, C., Buyya, R., Li, KC. (eds) Advanced Computing and Intelligent Engineering. Advances in Intelligent Systems and Computing, vol 1082. Springer, Singapore. https://doi.org/10.1007/978-981-15-1081-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1081-6_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1080-9

  • Online ISBN: 978-981-15-1081-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics