Skip to main content

Realization of Switching Mechanism of CO2 by Alkaline Adatoms on g-B4N3 Surface

  • Conference paper
  • First Online:
Advances in Spectroscopy: Molecules to Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 236))

Abstract

The switching mechanism of carbon dioxide (CO2) molecule by alkaline earth metal (AEM) (Mg+2, Ca+2, Sr+2, and Ba+2) functionalized on graphitic boron nitride (g-B4N3) nanosheet has been analyzed by using density functional theory (DFT) approach which includes long-range correlation (DFT+D2). This method has been implemented in such a way to understand the switchable or capture/release mechanism of the CO2 molecule. The positive valance alkaline earth adatoms on the nanosheet of g-B4N3 have been provided external energy to do the capture/release process of greenhouse gas CO2. Due to the weak adsorption of CO2, it makes possible to discharge from the g-B4N3 nanosheet and shows instantaneous switching mechanism. Briefly, the negatively charged g-B4N3 nanosheets are highly sensitive for CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gao, F. Ma, Y. Jiao, Q. Sun, Y. Jiao, E. Waclawik, A. Du, Comput. Mater. Sci. 108, 38–41 (2015)

    Article  Google Scholar 

  2. S. Mehdi Aghaei, M.M. Monshi, I. Torres, M. Banakermani, I. Calizo, Phys. Lett. A. 382, 334–338 (2018)

    Google Scholar 

  3. X.-T. Fan, M. Jia, M.-H. Lee, J. Cheng, J. Energy Chem. 26, 724–729 (2017)

    Article  Google Scholar 

  4. J. Shah, S. Kansara, S.K. Gupta, Y. Sonvane, Phys. Lett. A 381, 3084–3088 (2017)

    Article  ADS  Google Scholar 

  5. Y. Liu, H. Dang, Y. Li, P. Charoensuppanimit, S.A. Mohammad, K.A.M. Gasem, S. Wang, Comput. Mater. Sci. 133, 145–151 (2017)

    Article  Google Scholar 

  6. S. Chu, A. Majumdar, Nature 488, 294–303 (2012)

    Article  ADS  Google Scholar 

  7. S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology 29, 052001 (2018)

    Article  ADS  Google Scholar 

  8. C. Zhang, K.-W. Jun, G. Kwak, Y.-J. Lee, H.-G. Park, J. CO2 Util. 16, 1–7 (2016)

    Google Scholar 

  9. J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu, Chem. Soc. Rev. 41, 2308–2322 (2012)

    Article  Google Scholar 

  10. A.L. Dzubak, L.-C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Nat. Chem. 4, 810–816 (2012)

    Article  Google Scholar 

  11. N. Guo, K.M. Yam, X. Wang, C. Zhang, Nanotechnology 29, 105707 (2018)

    Article  ADS  Google Scholar 

  12. M. Shan, Q. Xue, N. Jing, C. Ling, T. Zhang, Z. Yan, J. Zheng, Nanoscale 4, 5477–5482 (2012)

    Article  ADS  Google Scholar 

  13. J. Schrier, A.C.S. Appl, Mater. Interfaces 4, 3745–3752 (2012)

    Article  Google Scholar 

  14. H. Liu, V.R. Cooper, S. Dai, D. Jiang, J. Phys. Chem. Lett. 3, 3343–3347 (2012)

    Article  Google Scholar 

  15. J. Zhao, Y. Ding, J. Chem. Theory Comput. 5, 1099–1105 (2009)

    Article  Google Scholar 

  16. A.K. Mishra, S. Ramaprabhu, J. Mater. Chem. 22, 3708–3712 (2012)

    Article  Google Scholar 

  17. Y. Jiao, A. Du, Z. Zhu, V. Rudolph, S.C. Smith, J. Phys. Chem. C 114, 7846–7849 (2010)

    Article  Google Scholar 

  18. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317, 932–934 (2007)

    Article  ADS  Google Scholar 

  19. Y. Wang, W. Wang, S. Zhu, L. Guo, Z. Zhang, P. Li, Comput. Mater. Sci. 143, 277–285 (2018)

    Article  Google Scholar 

  20. S. Kansara, S.K. Gupta, Y. Sonvane, Comput. Mater. Sci. 141, 235–242 (2018)

    Article  Google Scholar 

  21. X. Li, X. Wu, X.C. Zeng, J. Yang, ACS Nano 6, 4104–4112 (2012)

    Article  Google Scholar 

  22. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Nano Lett. 10, 3209–3215 (2010)

    Article  ADS  Google Scholar 

  23. H. Choi, Y.C. Park, Y.-H. Kim, Y.S. Lee, J. Am. Chem. Soc. 133, 2084–2087 (2011)

    Article  Google Scholar 

  24. J. Han, S. Lee, K. Choi, J. Kim, D. Ha, C.-G. Lee, B. An, S.-H. Lee, H. Mizuseki, J.-W. Choi, S. Kang, J. Hazard. Mater. 302, 375–385 (2016)

    Article  Google Scholar 

  25. X. Wang, Y. Huang, Z. Pan, Y. Wang, C. Liu, J. Hazard. Mater. 295, 43–54 (2015)

    Article  Google Scholar 

  26. S. Kansara, S.K. Gupta, Y. Sonvane, in AIP Conference Proceedings 1961 (2018), p. 030052

    Google Scholar 

  27. Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Chem. Eng. Sci. 64, 3721–3728 (2009)

    Article  Google Scholar 

  28. P.J.E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 46, 446–458 (2007)

    Article  Google Scholar 

  29. L. Hamon, E. Jolimaître, G.D. Pirngruber, Ind. Eng. Chem. Res. 49, 7497–7503 (2010)

    Article  Google Scholar 

  30. X. Wang, J. Qiu, P. Ning, X. Ren, Z. Li, Z. Yin, W. Chen, W. Liu, J. Hazard. Mater. 229, 128–136 (2012)

    Article  Google Scholar 

  31. E. Beňová, V. Zeleňák, D. Halamová, M. Almáši, V. Petrul’ová, M. Psotka, A. Zeleňáková, M. Bačkor, V. Hornebecq, J. Mater. Chem. B 5, 817–825 (2017)

    Google Scholar 

  32. Q. Lang, W. Hu, P. Zhou, T. Huang, S. Zhong, L. Yang, J. Chen, S. Bai, Nanotechnology 28, 484003 (2017)

    Article  Google Scholar 

  33. M.I.M. Alzeer, K.J.D. MacKenzie, R.A. Keyzers, Microporous Mesoporous Mater. 241, 316–325 (2017)

    Article  Google Scholar 

  34. H. Guo, W. Zhang, N. Lu, Z. Zhuo, X.C. Zeng, X. Wu, J. Yang, CO2 capture on h-BN sheet with high selectivity controlled by external electric field. J. Phys. Chem. C 119, 6912–6917 (2015)

    Article  Google Scholar 

  35. Q. Sun, Z. Li, D.J. Searles, Y. Chen, G. (Max) Lu, A. Du, J. Am. Chem. Soc. 135, 8246–8253 (2013)

    Google Scholar 

  36. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404–409 (2004)

    Article  ADS  Google Scholar 

  37. Q. Sun, Q. Wang, P. Jena, Y. Kawazoe, J. Am. Chem. Soc. 127, 14582–14583 (2005)

    Article  Google Scholar 

  38. R.B.N. Baig, S. Verma, M.N. Nadagouda, R.S. Varma, Sci. Rep. 6, 39387 (2016)

    Article  ADS  Google Scholar 

  39. R.C. Dante, P. Martín-Ramos, A. Correa-Guimaraes, J. Martín-Gil, Mater. Chem. Phys. 130, 1094–1102 (2011)

    Article  Google Scholar 

  40. M. Zarei, H. Ahmadzadeh, E.K. Goharshadi, A. Farzaneh, Anal. Chim. Acta 887, 245–252 (2015)

    Article  Google Scholar 

  41. P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Mater. Chem. Phys. 193, 438–446 (2017)

    Article  Google Scholar 

  42. L. Wang, C. Wang, X. Hu, H. Xue, H. Pang, Chem. Asian J. 11, 3305–3328 (2016)

    Google Scholar 

  43. J. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 8, 3092–3108 (2015)

    Article  Google Scholar 

  44. X. Tan, L. Kou, S.C. Smith, ChemSuschem 8, 2987–2993 (2015)

    Article  Google Scholar 

  45. X. Tan, L. Kou, H.A. Tahini, S.C. Smith, Sci. Rep. 5, 17636 (2015)

    Article  ADS  Google Scholar 

  46. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, Davide Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, Anton Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, Stefano Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009)

    Google Scholar 

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  48. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207–8215 (2003)

    Article  ADS  Google Scholar 

  49. V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittadini, J. Comput. Chem. 30, 934–939 (2009)

    Article  Google Scholar 

  50. S. Grimme, J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  51. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  52. W. Qin, X. Li, W.-W. Bian, X.-J. Fan, J.-Y. Qi, Biomaterials 31, 1007–1016 (2010)

    Article  Google Scholar 

  53. S. Kansara, S.K. Gupta, Y. Sonvane, T. Hussain, R. Ahuja, A.C.S. Appl, Energy Mater. 1(7), 3428–3433 (2018)

    Google Scholar 

  54. B. Santra, Density-functional theory exchange-correlation functionals for hydrogen bonds in water. Doctoral dissertation, Technische Universität Berlin, Berlin, 2010

    Google Scholar 

  55. A. Faghaninia, J.W. Ager, Phys. Rev. B 91, 235123 (2015)

    Article  ADS  Google Scholar 

  56. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M.F. Crommie, A. Zettl, Appl. Phys. Lett. 98, 242105 (2011)

    Article  ADS  Google Scholar 

  57. A.N. Andriotis, E. Richter, M. Menon, Phys. Rev. B 93, 081413 (2016)

    Article  ADS  Google Scholar 

  58. J. Zhu, J. Zhang, S. Xu, Y. Hao, Appl. Surf. Sci. 402, 175–181 (2017)

    Article  ADS  Google Scholar 

  59. S.K. Gupta, H. He, D. Banyai, M. Si, R. Pandey, S.P. Karna, Nanoscale 6, 5526–5531 (2014)

    Article  ADS  Google Scholar 

  60. E. Zaremba, W. Kohn, Phys. Rev. B 15, 1769–1781 (1977)

    Article  ADS  Google Scholar 

  61. M. Zhang, Y. Yu, Y. Zhang, Appl. Surf. Sci. 280, 15–24 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Sonvane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kansara, S., Gupta, S.K., Sonvane, Y., Srivastava, A. (2019). Realization of Switching Mechanism of CO2 by Alkaline Adatoms on g-B4N3 Surface. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0202-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0201-9

  • Online ISBN: 978-981-15-0202-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics