Skip to main content

Artificial Intelligence and Cybersecurity: Past, Presence, and Future

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1056))

Abstract

The rapid development of Internet services also led to a significant increase in cyber-attacks. Cyber threats are becoming more sophisticated and automation, make the protections ineffective. Conventional cybersecurity approaches have a limited effect on fighting new cyber threats. Therefore, we need new approaches, and artificial intelligence can aid to counter cybercrime. In this paper, we present the capability of adopting artificial intelligence techniques in cybersecurity and present some of those intelligent-based approaches already in place in practice. Furthermore, we highlight the limitations of AI-based approaches in cybersecurity as well as suggest some directions for research in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bai, J., et al.: A malware detection scheme based on mining format information. Sci. World J. (2014)

    Google Scholar 

  2. Elhadi, A.A.E., et al.: Improving the detection of malware behaviour using simplified data dependent API call graph. Int. J. Secur. Appl. 7(5), 29–42 (2013)

    Google Scholar 

  3. Kruczkowski, M., Szynkiewicz, E.N.: Support vector machine for malware analysis and classification. In: Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2. IEEE Computer Society (2014)

    Google Scholar 

  4. Uppal, D., et al.: Malware detection and classification based on the extraction of API sequences. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE (2014)

    Google Scholar 

  5. Kwon, B.J., et al.: The dropper effect: insights into malware distribution with downloader graph analytics. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM (2015)

    Google Scholar 

  6. Saxe, J., Berlin, K.: Deep neural network-based malware detection using two-dimensional binary program features. In: 10th International Conference on Malicious and Unwanted Software (MALWARE). IEEE (2015)

    Google Scholar 

  7. Wüchner, T., Ochoa, M., Pretschner, A.: Robust and effective malware detection through quantitative data flow graph metrics. In: International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, Cham (2015)

    Chapter  Google Scholar 

  8. Kolosnjaji, B., et al.: Deep learning for classification of malware system call sequences. In: Australasian Joint Conference on Artificial Intelligence. Springer, Cham (2016)

    Chapter  Google Scholar 

  9. Tobiyama, S., et al.: Malware detection with the deep neural network using process behaviour. In: Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 2. IEEE (2016)

    Google Scholar 

  10. David, O.E., Netanyahu, N.S.: Design: deep learning for automatic malware signature generation and classification. In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE (2015)

    Google Scholar 

  11. Bace, R., Mell, P.: NIST special publication on intrusion detection systems. Booz-Allen and Hamilton Inc., Mclean (2001)

    Google Scholar 

  12. Lincoln Laboratory: MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation (n.d.). https://www.ll.mit.edu/ideval/data

  13. Hettich, S., Bay, S.D.: The UCI KDD Archive (1999). http://kdd.ics.uci.edu

  14. The Shmoo Group: DEFCON 8, 10 and 11 (2000). http://cctf.shmoo.com/

  15. Center for Applied Internet Data Analysis: CAIDA Data (n.d.). http://www.caida.org/data/index.xml

  16. Lawrence Berkeley National Laboratory (LBNL) and International Computer Science Institute (ICSI): LBNL/ICSI Enterprise Tracing Project (2005). http://www.icir.org/enterprise-tracing/Overview.html

  17. Sangster, B., et al.: Toward Instrumenting Network Warfare Competitions to Generate Labeled Datasets. CSET (2009)

    Google Scholar 

  18. Song, J., et al.: Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security. ACM (2011)

    Google Scholar 

  19. Sperotto, A., et al.: A labelled data set for flow-based intrusion detection. In: International Workshop on IP Operations and Management. Springer, Berlin (2009)

    Chapter  Google Scholar 

  20. Prusty, S., Levine, B.N., Liberatore, M.: Forensic investigation of the OneSwarm anonymous filesharing system. In: Proceedings of the 18th ACM Conference on Computer and Communications Security. ACM (2011)

    Google Scholar 

  21. Canadian Institute for Cybersecurity: Intrusion detection evaluation dataset (ISCXIDS2012) (n.d.). http://www.unb.ca/cic/datasets/ids.html

  22. Creech, G., Hu, J.: Generation of a new IDS test dataset: time to retire the KDD collection. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2013)

    Google Scholar 

  23. UNB Canadian Cyber Security, Intrusion Detection Evaluation Dataset (CICIDS2017). http://www.unb.ca/cic/datasets/ids-2017.html

  24. Xiang, C., Yong, P.C., Meng, L.S.: Design of multiple-level hybrid classifier for intrusion detection system using Bayesian clustering and decision trees. Pattern Recognit. Lett. 29, 918–924 (2008)

    Article  Google Scholar 

  25. Shafi, K., Abbass, H.A.: An adaptive genetic-based signature learning system for intrusion detection. Expert Syst. Appl. 36(10), 12036–12043 (2009)

    Article  Google Scholar 

  26. Tong, X., Wang, Z., Haining, Y.: A research using hybrid RBF/Elman neural networks for intrusion detection system secure model. Comput. Phys. Commun. 180(10), 1795–1801 (2009)

    Article  Google Scholar 

  27. Wang, G., et al.: A new approach to intrusion detection using Artificial Neural Networks and fuzzy clustering. Expert. Syst. Appl. 37(9), 6225–6232 (2010)

    Article  Google Scholar 

  28. Wagner, C., François, J., Engel, T.: Machine learning approach for IP-flow record anomaly detection. In: International Conference on Research in Networking. Springer, Berlin (2011)

    Chapter  Google Scholar 

  29. Lin, S.-W., et al.: An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection. Appl. Soft Comput. 12(10), 3285–3290 (2012)

    Article  Google Scholar 

  30. Yassin, W., et al.: Anomaly-based intrusion detection through k-means clustering and naive Bayes classification. In: Proceedings of 4th International Conference on Computer Informatics, ICOCI, vol. 49 (2013)

    Google Scholar 

  31. Shrivas, A.K., Dewangan, A.K.: An ensemble model for classification of attacks with feature selection based on KDD99 and NSL-KDD data set. Int. J. Comput. Appl. 99(15), 8–13 (2014)

    Google Scholar 

  32. Lin, W.-C., Ke, S.-W., Tsai, C.-F.: CANN: an intrusion detection system based on combining cluster centres and nearest neighbours. Knowl.-Based Syst. 78, 13–21 (2015)

    Article  Google Scholar 

  33. Hodo, E., et al.: Threat analysis of IoT networks using artificial neural network intrusion detection system. In: 2016 International Symposium on Networks, Computers and Communications (ISNCC). IEEE (2016)

    Google Scholar 

  34. Subba, B., Biswas, S., Karmakar, S.: Enhancing performance of anomaly-based intrusion detection systems through dimensionality reduction using principal component analysis. In: 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE (2016)

    Google Scholar 

  35. Farnaaz, N., Jabbar, M.A.: Random forest modelling for network intrusion detection system. Procedia Comput. Sci. 89, 213–217 (2016)

    Article  Google Scholar 

  36. Ambusaidi, M.A., et al.: Building an intrusion detection system using a filter-based feature selection algorithm. IEEE Trans. Comput. 65(10), 2986–2998 (2016)

    Article  MathSciNet  Google Scholar 

  37. Kim, J., et al.: Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International Conference on Platform Technology and Service (PlatCon). IEEE (2016)

    Google Scholar 

  38. Shone, N., et al.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

    Article  Google Scholar 

  39. Xiang, G., et al.: Cantina+: a feature-rich machine learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(2), 21 (2011)

    Article  Google Scholar 

  40. Gowtham, R., Krishnamurthi, I.: A comprehensive and efficacious architecture for detecting phishing webpages. Comput. Secur. 40, 23–37 (2014)

    Article  Google Scholar 

  41. Thabtah, F., Mohammad, R.M., McCluskey, L.: A dynamic self-structuring neural network model to combat phishing. In: 2016 International Joint Conference on Neural Networks (IJCNN). IEEE (2016)

    Google Scholar 

  42. Yi, P., et al.: Web phishing detection using a deep learning framework. Wirel. Commun. Mob. Comput. 2018 (2018)

    Google Scholar 

  43. Jain, A.K., Gupta, B.B.: Towards detection of phishing websites on client-side using machine learning based approach. Telecommun. Syst. 68(4), 687–700 (2018)

    Article  Google Scholar 

  44. Tyagi, I., et al.: A novel machine learning approach to detect phishing websites. In: 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE (2018)

    Google Scholar 

  45. Zuhair, H., Selamat, A.: Phishing hybrid feature-based classifier by using recursive features subset selection and machine learning algorithms. In: International Conference of Reliable Information and Communication Technology. Springer, Cham (2018)

    Google Scholar 

  46. Li, Y., et al.: A stacking model using URL and HTML features for phishing webpage detection. Futur. Gener. Comput. Syst. 94, 27–39 (2019)

    Article  Google Scholar 

  47. Qabajeh, Issa, Thabtah, Fadi, Chiclana, Francisco: A recent review of conventional vs. automated cybersecurity anti-phishing techniques. Comput. Sci. Rev. 29, 44–55 (2018)

    Article  Google Scholar 

  48. Adebowale, M.A., et al.: Intelligent web-phishing detection and protection scheme using integrated features of Images, frames and text. Expert Syst. Appl. (2018)

    Google Scholar 

  49. Shirazi, H., Bezawada, B., Ray, I.: Know thy domain name: unbiased phishing detection using domain name based features. In: Proceedings of the 23rd ACM on Symposium on Access Control Models and Technologies. ACM (2018)

    Google Scholar 

  50. Sahingoz, O.K., et al.: Machine learning based phishing detection from URLs. Expert Syst. Appl. 117, 345–357 (2019)

    Article  Google Scholar 

  51. Siddiqui, S., et al.: Detecting advanced persistent threats using fractal dimension based machine learning classification. In: Proceedings of the 2016 ACM on the International Workshop on Security and Privacy Analytics. ACM (2016)

    Google Scholar 

  52. Moon, D., et al.: DTB-IDS: an intrusion detection system based on decision tree using behaviour analysis for preventing APT attacks. J. Supercomput. 73(7), 2881–2895 (2017)

    Article  Google Scholar 

  53. Burnap, P., et al.: Malware classification using self-organising feature maps and machine activity data. Comput. Secur. 73, 399–410 (2018)

    Article  Google Scholar 

  54. Ghafir, I., et al.: Detection of advanced persistent threat using machine-learning correlation analysis. Future Gener. Comput. Syst. 89, 349–359 (2018)

    Article  Google Scholar 

  55. Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated convolutional autoencoders. Secur. Commun. Netw. 2017 (2017)

    Article  Google Scholar 

  56. Zelinka, I., Das, S., Sikora, L., Šenkeřík, R.: Swarm virus-next-generation virus and antivirus paradigm? Swarm Evol. Comput. 43, 207–224 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2019/137, VSB Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Cong Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Truong, T.C., Zelinka, I., Plucar, J., Čandík, M., Šulc, V. (2020). Artificial Intelligence and Cybersecurity: Past, Presence, and Future. In: Dash, S., Lakshmi, C., Das, S., Panigrahi, B. (eds) Artificial Intelligence and Evolutionary Computations in Engineering Systems. Advances in Intelligent Systems and Computing, vol 1056. Springer, Singapore. https://doi.org/10.1007/978-981-15-0199-9_30

Download citation

Publish with us

Policies and ethics