Skip to main content

Environmental Fate of Organophosphate Residues from Agricultural Soils to Fresh Farm Produce: Microbial Interventions for Sustainable Bioremediation Strategies

  • Chapter
  • First Online:
Microbes and Enzymes in Soil Health and Bioremediation

Abstract

The dependency of the growing population for the requirement of food has put an immense pressure on agriculture. As a direct consequence, different stakeholders especially associated with the agri-ecosystem are making concentrated efforts to enhance crop productivity. This has resulted in indiscriminate use of chemical pesticides/insecticides in agricultural fields. Pesticides are mainly used to control unwanted growth of plants (weeds) and also to control the population of pests, so that the agricultural and industrial products remain safe. In modern agriculture, several pesticides including organochlorine, organophosphate, carbamate, fungicides, herbicides, and synthetic pyrethroids are well effective in this regard. Because of their low cost of manufacturing, organophosphate pesticide (OPP) is the preferred one among them. The worldwide use of organophosphate pesticides (OPPs) in natural agri-ecosystems is now a well-documented fact. Out of five billion pounds of pesticides which are used worldwide every year, organophosphate pesticides (mostly insecticides) constitute 20–38%, and the main candidates are chlorpyrifos, dichlorvos, diazinon, dimethoate, fenitrothion, methyl parathion, monocrotophos, malathion, and profenophos. Regular use of these pesticides results in an increase in environmental and occupational exposures. During the last few decades, there is a growing concern among consumers as well as among farmers about their negative effect in human and environmental health. In spite of the efforts to shift toward organic farming practices, the residual levels of OPs in soil and water bodies are still posing a threat to environment. To eliminate the OP pesticides or reduce their concentration from the environment, development of sustainable microbial-based bioremediation strategies has been initiated in the early 1970s, and the enzymatic degradation of OPs by organophosphorus hydrolase enzymes has been well studied in this regard. Modern biotechnological inventions and recently developed omics-based techniques have further increased the effectiveness of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonijevic B, Stojiljkovic MP (2007) Oxtime efficacy against organophosphates. Clin Med Res 5(1):71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beleno Cabarcas MT, Stoytcheva M, Zlatev R, Montero G, Velkova Z, Gochev V (2018) Chitosan nanocomposite modified OPH-based Amperometric sensor for organophosphorus pesticides determination. Curr Anal Chem 14(1):75–82

    Article  CAS  Google Scholar 

  • Cartier C, Warembourg C, Le Maner-Idrissi G, Lacroix A, Rouget F, Monfort C, Limon G, Durand G, Saint-Amour D, Cordier S, Chevrier C (2015) Organophosphate insecticide metabolites in prenatal and childhood urine samples and intelligence scores at 6 years of age: results from the mother–child PELAGIE cohort (France). Environ Health Perspect 124(5):674–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chatterjee S, Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 309(1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Karlovsky P (2010) Removal of the endocrine disrupter butyl benzyl phthalate from the environment. Appl Microbiol Biotechnol 87(1):61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croes K, Den Hond E, Bruckers L, Govarts E, Schoeters G, Covaci A, Loots I, Morrens B, Nelen V, Sioen I, Van Larebeke N (2015) Endocrine actions of pesticides measured in the Flemish environment and health studies (FLEHS I and II). Environ Sci Pollut Res 22(19):14589–14599

    Article  CAS  Google Scholar 

  • Darko G, Akoto O (2008) Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food Chem Toxicol 46(12):3703–3706

    Article  CAS  PubMed  Google Scholar 

  • Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS (2011) Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect 119(8):1182–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, Morga N, Jewell NP (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115(5):792–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essumang DK, Asare EA, Dodoo DK (2013) Pesticides residues in okra (non-target crop) grown close to a watermelon farm in Ghana. Environ Monit Assess 185(9):7617–7625

    Article  CAS  PubMed  Google Scholar 

  • FAO- Pesticides Use Data [Internet] (2019) [cited January 28, 2019]. Available from: http://www.fao.org/faostat/en/#data/RP

  • Farina Y, Munawar N, Abdullah MP, Yaqoob M, Nabi A (2018) Fate, distribution, and bioconcentration of pesticides impact on the organic farms of Cameron Highlands, Malaysia. Environ Monit Assess 190(7):386

    Article  PubMed  CAS  Google Scholar 

  • Fenik J, Tankiewicz M, Biziuk M (2011) Properties and determination of pesticides in fruits and vegetables. TrAC Trends Anal Chem 30(6):814–826

    Article  CAS  Google Scholar 

  • Field MJ, Wymore TW (2014) Multiscale modeling of nerve agent hydrolysis mechanisms: a tale of two Nobel prizes. Phys Scr 89(10):108004

    Article  CAS  Google Scholar 

  • Fuhrimann S, Winkler MS, Staudacher P, Weiss FT, Stamm C, Eggen RI, Lindh CH, Menezes-Filho JA, Baker JM, Ramírez-Muñoz F, Gutiérrez-Vargas R (2019) Exposure to pesticides and health effects on farm owners and workers from conventional and organic agricultural farms in Costa Rica: protocol for a cross-sectional study. JMIR Res Protocols 8(1):e10914

    Article  Google Scholar 

  • Gao J, Ellis LBM, Wackett LP (2010) The University of Minnesota Biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38:D488–D491

    Article  CAS  PubMed  Google Scholar 

  • Gnusowski B, Nowacka A, Łozowicka B, Szpyrka E, Walorczyk S (2011) Pesticide residues in organic food and feed of plant origin. J Res Appl Agricult Eng 56(3):102–107

    Google Scholar 

  • Gotthard G, Hiblot J, Gonzalez D, Chabriere E, Elias M (2013) Crystallization and preliminary X-ray diffraction analysis of the organophosphorus hydrolase OPHC2 from Pseudomonas pseudoalcaligenes. Acta Crystallogr Sect F: Struct Biol Cryst Commun 69(1):73–76

    Article  CAS  Google Scholar 

  • Grandjean P, Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol 13(3):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hondred JA, Breger JC, Alves NJ, Trammell SA, Walper SA, Medintz IL, Claussen JC (2018) Printed graphene electrochemical biosensors fabricated by inkjet maskless lithography for rapid and sensitive detection of organophosphates. ACS Appl Mater Interfaces 10(13):11125–11134

    Article  CAS  PubMed  Google Scholar 

  • Kazemi M, Tahmasbi AM, Valizadeh R, Naserian AA, Soni A (2012) Organophosphate pesticides. Agricult Sci Res J 2(9):512–522

    Google Scholar 

  • Kumar S, Kaushik G, Dar MA, Nimesh S, Lopez-Chuken UJ, Villarreal-Chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28(2):190–208

    Article  Google Scholar 

  • Mahajan R, Attri S, Mehta V, Udayabanu M, Goel G (2018) Microbe-bio-chemical insight: reviewing interactions between dietary polyphenols and gut microbiota. Mini Rev Med Chem 18(15):1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Mahajan R, Verma S, Kushwaha M, Singh D, Akhter Y, Chatterjee S (2019) Biodegradation of di-n-butyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway. Int J Biol Macromol 122:806–816

    Article  CAS  PubMed  Google Scholar 

  • Mahajan R, Chatterjee S (2018) A simple HPLC–DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment. Environ Monit Assess 190(6)

    Google Scholar 

  • Mie A, Andersen HR, Gunnarsson S, Kahl J, Kesse-Guyot E, Rembiałkowska E, Quaglio G, Grandjean P (2017) Human health implications of organic food and organic agriculture: a comprehensive review. Environ Health 16(1):111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz-Quezada MT, Iglesias V, Lucero B, Steenland K, Barr DB, Levy K, Ryan PB, Alvarado S, Concha C (2012) Predictors of exposure to organophosphate pesticides in schoolchildren in the province of Talca, Chile. Environ Int 47:28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Namba T (1971) Cholinesterase inhibition by organophosphorus compounds and its clinical effects. Bull World Health Organ 44(1–3):289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narang U, Narang P, Gupta OP (2015) Organophosphorus poisoning: a social calamity. J Mahatma Gandhi Institute of Medical Sci 20(1):46–51

    Article  Google Scholar 

  • Peter JV, Sudarsan TI, Moran JL (2014) Clinical features of organophosphate poisoning: a review of different classification systems and approaches. Indian J Critic Care Med 18(11):735

    Article  Google Scholar 

  • Quijano L, Yusà V, Font G, Pardo O (2016) Chronic cumulative risk assessment of the exposure to organophosphorus, carbamate and pyrethroid and pyrethrin pesticides through fruit and vegetables consumption in the region of Valencia (Spain). Food Chem Toxicol 89:39–46

    Article  CAS  PubMed  Google Scholar 

  • Rathnayake LK, Northrup SH (2016) Structure and mode of action of organophosphate pesticides: a computational study. Computational and Theoretical Chemistry 1088:9–23

    Article  CAS  Google Scholar 

  • Robb EL, Baker MB (2018) Organophosphate toxicity. In Stat pearls [internet]. StatPearls Publishing

    Google Scholar 

  • Roca M, Miralles-Marco A, Ferré J, Pérez R, Yusà V (2014) Biomonitoring exposure assessment to contemporary pesticides in a school children population of Spain. Environ Res 131:77–85

    Article  CAS  PubMed  Google Scholar 

  • Sapbamrer R, Hongsibsong S (2014) Organophosphorus pesticide residues in vegetables from farms, markets, and a supermarket around Kwan Phayao Lake of northern Thailand. Arch Environ Contam Toxicol 67(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Schofield DA, DiNovo AA (2010) Generation of a mutagenized organophosphorus hydrolase for the biodegradation of the organophosphate pesticides malathion and demeton-S. J Appl Microbiol 109(2):548–557

    CAS  PubMed  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Spaan S, Pronk A, Koch HM, Jusko TA, Jaddoe VW, Shaw PA, Tiemeier HM, Hofman A, Pierik FH, Longnecker MP (2015) Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the Generation R Study. J Expos Sci Environ Epidemiol 25(3):286

    Article  CAS  Google Scholar 

  • Swarnam TP, Velmurugan A (2013) Pesticide residues in vegetable samples from the Andaman Islands, India. Environ Monit Assess 185(7):6119–6127

    Article  CAS  PubMed  Google Scholar 

  • Szala J, Szponik M (2012) Dynamics of chlorpyrifos residues in cauliflower cultivation fadeDynamika zanikania pozostałości chloropiryfosu w uprawie kalafiora. Prog Plant Protect 52(4):1117–1119

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671

    Article  CAS  PubMed  Google Scholar 

  • Vermeire T, MacPhail R, Waters M (2003) Integrated human and ecological risk assessment: a case study of Organophosphorous pesticides in the environment. Hum Ecol Risk Assess Int J 9(1):343–357

    Article  CAS  Google Scholar 

  • Witczak A, Pohoryło A, Abdel-Gawad H, Cybulski J (2018) Residues of some organophosphorus pesticides on and in fruits and vegetables available in Poland, an assessment based on the European union regulations and health assessment for human populations. Phosphorus Sulfur Silicon Relat Elem:1–10

    Google Scholar 

  • Young JG, Eskenazi B, Gladstone EA, Bradman A, Pedersen L, Johnson C, Barr DB, Furlong CE, Holland NT (2005) Association between in utero organophosphate pesticide exposure and abnormal reflexes in neonates. Neurotoxicology 26(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Liu Q, Liu J, Wang Q, Wang Y (2016) Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control 60:353–360

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Ashok Nadda, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, HP, who has kindly invited us to contribute this chapter and also for his encouragement and advice since the invitation. Research in SC lab is supported by the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahajan, R., Chandel, S., Chatterjee, S. (2019). Environmental Fate of Organophosphate Residues from Agricultural Soils to Fresh Farm Produce: Microbial Interventions for Sustainable Bioremediation Strategies. In: Kumar, A., Sharma, S. (eds) Microbes and Enzymes in Soil Health and Bioremediation. Microorganisms for Sustainability, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-13-9117-0_9

Download citation

Publish with us

Policies and ethics