Skip to main content

Molecular Beam Epitaxy Growth and Properties of GaAsBi and AlAsBi

  • Chapter
  • First Online:
Book cover Bismuth-Containing Alloys and Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 285))

  • 739 Accesses

Abstract

GaAsBi alloys have been extensively studied in recent years, and the highest Bi concentration yet reached has been 22 %. Many photoelectric devices using this material have been produced, such as quantum well lasers, LEDs, solar cells, etc. The Bi incorporated into AlAs is expected to change the bandgap from indirect to direct. There are only a few theoretical reports on AlAsBi, however, experimental research results are seldom reported. In this chapter, we review the molecular beam epitaxy of GaAsBi and analyze the growth mechanism. Besides, we present the synthesis of AlAsBi by molecular beam epitaxy. The growth temperature, As/Ga flux ratio, Bi flux and the growth rate all have great influence on the Bi incorporation. Bismuth atoms play a surfactant role under As-rich conditions and an anti-surfactant role under Ga-rich conditions. Droplets tend to be formed on the surface of GaAsBi alloys due to the atomic size mismatch between Bi atoms and As atoms. The high-angle annular dark-field mode of scanning transmission electron microscopy images confirm Bi atoms cluster exsiting in GaAsBi films. Furthermore, we show the optical properties of GaAsBi and discuss the localized states induced by Bi. The photoluminescence wavelength of GaAsBi redshifts with increasing Bi concentration. The bandgap of GaAsBi is insensitive to temperature, which is important for developing un-cooled lasers. We discuss the influence of Bi incorporation on the electric and transport properties of GaAsBi. The types of dominant point defects induced by Bi incorporation are analyzed. The measurement results of the electron effective mass demonstrate that Bi incorporation not only changes the valence band but also has non-negligible influence on the conduction band in GaAsBi. For AlAsBi, we review the theoretical simulations and present the molecular beam epitaxy growth without substrate rotaion to investigate the influence of As/Al flux raio and the Bi flux on Bi incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Yoshida, H. Yamamizu, T. Kita, K. Oe, Optical Transitions in New Semiconductor Alloy GaAs1−xBix with Temperature-Insensitive Band Gap. in Conference Proceedings. 2001 International Conference on Indium Phosphide and Related Materials. 13th IPRM (Cat. No.01CH37198). 14–18 May 2001. pp. 109–112

    Google Scholar 

  2. O. Kunishige, Characteristics of semiconductor alloy GaAs1−xBix. Jpn. J. Appl. Phys. 41(5R), 2801 (2002)

    Google Scholar 

  3. M. Yoshimoto, S. Murata, A. Chayahara, Y. Horino, J. Saraie, K. Oe, Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42(10B), L1235 (2003)

    Article  CAS  Google Scholar 

  4. K. Alberi, O.D. Dubon, W. Walukiewicz, K.M. Yu, K. Bertulis, A. Krotkus, Valence band anticrossing in GaAs1−xBix. Appl. Phys. Lett. 91, 051909 (2007)

    Article  CAS  Google Scholar 

  5. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E.C. Young, T. Tiedje, Giant Spin-orbit bowing in GaAs1−xBix. Phys. Rev. Lett. 97(6), 067205 (2006)

    Article  CAS  Google Scholar 

  6. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, The electronic band structure of GaAsBi/GaAs layers: influence of strain and band anti-crossing. J. Appl. Phys. 111(11), 113108 (2012)

    Article  CAS  Google Scholar 

  7. X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu et al, 1.142μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. ACS Photonics. 4(6), 1322–1326 (2017)

    Article  CAS  Google Scholar 

  8. T. Fuyuki, R. Yoshioka, K. Yoshida, M. Yoshimoto, ‘GaAsBi Laser Diodes with Low Temperature Dependence of Lasing Wavelength. in CLEO: 2014. 2014/06/08. (Optical Society of America, San Jose, California 2014), p. JTu4A.122

    Google Scholar 

  9. T. Thomas, A. Mellor, N.P. Hylton, M. Führer, D. Alonso-Álvarez, A. Braun et al., Requirements for a GaAsBi 1 eV sub-cell in a GaAs-based multi-junction solar cell. Semicond. Sci. Technol. 30(9), 094010 (2015)

    Article  CAS  Google Scholar 

  10. A. Andrius, S. Polina, B. Klemensas, A. Ramūnas, K. Arūnas, GaAsBi photoconductive terahertz detector sensitivity at long excitation wavelengths. Appl. Phys. Express 5(2), 022601 (2012)

    Article  CAS  Google Scholar 

  11. S. Mazzucato, T.T. Zhang, H. Carrère, D. Lagarde, P. Boonpeng, A. Arnoult et al., Electron spin dynamics and g-factor in GaAsBi. Appl. Phys. Lett. 102(25), 252107 (2013)

    Article  CAS  Google Scholar 

  12. P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I.P. Marko et al., Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett. 102(24), 242115 (2013)

    Article  CAS  Google Scholar 

  13. F. Takuma, Y. Kenji, Y. Ryo, Y. Masahiro, Electrically pumped room-temperature operation of GaAs 1−xBix laser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express 7(8), 082101 (2014)

    Article  CAS  Google Scholar 

  14. R.B. Lewis, M. Masnadi-Shirazi, T. Tiedje, Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 101(8), 082112 (2012)

    Article  CAS  Google Scholar 

  15. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Composition dependence of photoluminescence of GaAs1−xBix alloys. Appl. Phys. Lett. 95(4), 041903 (2009)

    Article  CAS  Google Scholar 

  16. M. Masnadi Shirazi Nejad. Optical and electronic properties of GaAsBi alloys for device applications. PhD Thesis, 47–50, (2015)

    Google Scholar 

  17. L. Yu, D. Li, S. Zhao, G. Li, K. Yang, First principles study on electronic structure and optical properties of ternary GaAs: Bi alloy. Materials 5(12), 2486 (2012)

    Article  CAS  Google Scholar 

  18. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, M.B. Whitwick, Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix. Appl. Phys. Lett. 92(19), 192110 (2008)

    Article  CAS  Google Scholar 

  19. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei et al., Molecular beam epitaxy growth of GaAs1−xBix. Appl. Phys. Lett. 82(14), 2245–2247 (2003)

    Article  CAS  Google Scholar 

  20. G. Vardar, S.W. Paleg, M.V. Warren, M. Kang, S. Jeon, R.S. Goldman, Mechanisms of droplet formation and Bi incorporation during molecular beam epitaxy of GaAsBi. Appl. Phys. Lett. 102(4), 042106 (2013)

    Article  CAS  Google Scholar 

  21. W. Bennarndt, G. Boehm, M.-C. Amann, Domains of molecular beam epitaxial growth of Ga(In)AsBi on GaAs and InP substrates. J. Cryst. Growth 436, 56–61 (2016)

    Article  CAS  Google Scholar 

  22. F. Bastiman, A.R.B. Mohmad, J.S. Ng, J.P.R. David, S.J. Sweeney, Non-stoichiometric GaAsBi/GaAs (100) molecular beam epitaxy growth. J. Cryst. Growth 338(1), 57–61 (2012)

    Article  CAS  Google Scholar 

  23. C.T. Foxon, B.A. Joyce, Interaction kinetics of As2 and Ga on 100 GaAs surfaces. Surf. Sci. 64(1), 293–304 (1977)

    Article  CAS  Google Scholar 

  24. C.T. Foxon, B.A. Joyce, Interaction kinetics of As4 and Ga on 100 GaAs surfaces using a modulated molecular beam technique. Surf. Sci. 50(2), 434–450 (1975)

    Article  CAS  Google Scholar 

  25. R.D. Richards, F. Bastiman, C.J. Hunter, D.F. Mendes, A.R. Mohmad, J.S. Roberts et al., Molecular beam epitaxy growth of GaAsBi using As2 and As4. J. Cryst. Growth 390, 120–124 (2014)

    Article  CAS  Google Scholar 

  26. P.M. Mooney, K.P. Watkins, Z. Jiang, A.F. Basile, R.B. Lewis, V. Bahrami-Yekta et al., Deep level defects in n-type GaAsBi and GaAs grown at low temperatures. J. Appl. Phys. 113(13), 133708 (2013)

    Article  CAS  Google Scholar 

  27. A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas et al., Kinetically limited growth of GaAsBi by molecular-beam epitaxy. J. Cryst. Growth 338(1), 107–110 (2012)

    Article  CAS  Google Scholar 

  28. E.C. Young, S. Tixier, T. Tiedje, Bismuth surfactant growth of the dilute nitride GaNxAs1−x. J. Cryst. Growth 279(3), 316–320 (2005)

    Article  CAS  Google Scholar 

  29. P. Ludewig, Z.L. Bushell, L. Nattermann, N. Knaub, W. Stolz, K. Volz, Growth of Ga(AsBi) on GaAs by continuous flow MOVPE. J. Cryst. Growth 396(24), 95–99 (2014)

    Article  CAS  Google Scholar 

  30. K. Oe, H. Okamoto, New semiconductor alloy GaAs1−xBix grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37(11A), L1283–L1285 (1998)

    Article  Google Scholar 

  31. J.A. Morgan, G.M. Nathanson, Atom scattering from atomic surfactants: Collisions of argon with a dilute Bi: Ga solution. J. Chem. Phys. 114(5), 1958 (2001)

    Article  CAS  Google Scholar 

  32. M. Masnadi-Shirazi, D.A. Beaton, R.B. Lewis, X.F. Lu, T. Tiedje, Surface reconstructions during growth of GaAs1-xBix alloys by molecular beam epitaxy. J. Cryst. Growth 338(1), 80–84 (2012)

    Article  CAS  Google Scholar 

  33. F. Bastiman, A.G. Cullis, J.P.R. David, S.J. Sweeney, Bi incorporation in GaAs(100)-2 × 1 and 4 × 3 reconstructions investigated by RHEED and STM. J. Cryst. Growth 341(1), 19–23 (2012)

    Article  CAS  Google Scholar 

  34. M.P.J. Punkkinen, Bismuth-stabilized (2 × 1) and (2 × 4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study. Phys. Rev. B 78(19), 2599–2604 (2008)

    Article  CAS  Google Scholar 

  35. K. Takahiro, K. Kawatsura, K. Oe, F. Nishiyama, Structural characterization of GaAs 1−xBix alloy by rutherford backscattering spectrometry combined with the channeling technique. J. Electron. Mater. 32(1), 34–37 (2003)

    Article  CAS  Google Scholar 

  36. J. Ralston, G.W. Wicks, L.F. Eastman, B.C. De Cooman, C.B. Carter, Defect structure and intermixing of ion-implanted AlxGa1−xAs/GaAs superlattices. J. Appl. Phys. 59(1), 120–123 (1986)

    Article  CAS  Google Scholar 

  37. E.S. Tok, J.H. Neave, J. Zhang, B.A. Joyce, T.S. Jones, Arsenic incorporation kinetics in GaAs(001) homoepitaxy revisited. Surf. Sci. 374(1–3), 397–405 (1997)

    Article  CAS  Google Scholar 

  38. F. Sarcan, O. Donmez, K. Kara, A. Erol, E. Akalin, M. Cetin Arikan et al., Bismuth-induced effects on optical, lattice vibrational, and structural properties of bulk GaAsBi alloys. Nanoscale Res. Lett. 9(1), 119 (2014)

    Article  CAS  Google Scholar 

  39. H. Fitouri, I. Moussa, A. Rebey, B. El Jani, Study of GaAsBi MOVPE growth on (100) GaAs substrate under high Bi flow rate by high resolution X-ray diffraction. Microelectron. Eng. 88(4), 476–479 (2011)

    Article  CAS  Google Scholar 

  40. A. Erol, E. Akalin, K. Kara, M. Aslan, V. Bahrami-Yekta, R.B. Lewis et al., Raman and AFM studies on nominally undoped, p- and n-type GaAsBi alloys. J. Alloy. Compd. 722, 339–343 (2017)

    Article  CAS  Google Scholar 

  41. E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, K. Volz, Investigation of the microstructure of metallic droplets on Ga(AsBi)/GaAs. J. Cryst. Growth 408, 71–77 (2014)

    Article  CAS  Google Scholar 

  42. C.R. Tait, L. Yan, J.M. Millunchick, Droplet induced compositional inhomogeneities in GaAsBi. Appl. Phys. Lett. 111(4), 042105 (2017)

    Article  CAS  Google Scholar 

  43. M. Wu, E. Luna, J. Puustinen, M. Guina, A. Trampert, Formation and phase transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 25(20), 205605 (2014)

    Article  CAS  Google Scholar 

  44. N. Balades, D.L. Sales, M. Herrera, C.H. Tan, Y. Liu, R.D. Richards et al., Analysis of Bi distribution in epitaxial GaAsBi by aberration-corrected HAADF-STEM. Nanoscale Res. Lett. 13(1), 125 (2018)

    Article  CAS  Google Scholar 

  45. G. Ciatto, E.C. Young, F. Glas, J. Chen, R.A. Mori, T. Tiedje, Spatial correlation between Bi atoms in dilute GaAs1−xBix: from random distribution to Bi pairing and clustering. Phys. Rev. B 78(3), 035325 (2008)

    Article  CAS  Google Scholar 

  46. F. Bastiman, Y. Qiu, T. Walther, GaAsBi atomic surface order and interfacial roughness observed by STM and TEM. J. Phys: Conf. Ser. 326(1), 012060 (2011)

    Google Scholar 

  47. J. Puustinen, M. Wu, E. Luna, A. Schramm, P. Laukkanen, M. Laitinen et al., Variation of lattice constant and cluster formation in GaAsBi. J. Appl. Phys. 114(24), 243504 (2013)

    Article  CAS  Google Scholar 

  48. A. Janotti, S.-H. Wei, S.B. Zhang, Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs. Phys. Rev. B 65(11), 115203 (2002)

    Article  CAS  Google Scholar 

  49. A.R. Mohmad, F. Bastiman, C.J. Hunter, J.S. Ng, S.J. Sweeney, J.P.R. David, The effect of Bi composition to the optical quality of GaAs1−xBix. Appl. Phys. Lett. 99(4), 042107 (2011)

    Article  CAS  Google Scholar 

  50. A. Mohmad, F. Bastiman, C. Hunter, R. Richards, S. Sweeney, J. Ng et al., Localization effects and band gap of GaAsBi alloys. Phys. Status Solidi (b) 251(6), 1276–1281 (2014)

    Article  CAS  Google Scholar 

  51. C. Gogineni, N.A. Riordan, S.R. Johnson, X. Lu, T. Tiedje, Disorder and the Urbach edge in dilute bismide GaAsBi. Appl. Phys. Lett. 103(4), 041110 (2013)

    Article  CAS  Google Scholar 

  52. Y.I. Mazur, V. Dorogan, M. Benamara, M. Ware, M. Schmidbauer, G. Tarasov et al., Effects of spatial confinement and layer disorder in photoluminescence of GaAs1−xBix/GaAs heterostructures. J. Phys. D Appl. Phys. 46(6), 065306 (2013)

    Article  CAS  Google Scholar 

  53. S. Imhof, C. Wagner, A. Chernikov, M. Koch, K. Kolata, N.S. Köster et al., Evidence of two disorder scales in Ga(AsBi). Phys. Satus Solidi (b) 248(4), 851–854 (2011)

    Article  CAS  Google Scholar 

  54. A.R. Mohmad, F. Bastiman, J.S. Ng, S.J. Sweeney, J.P.R. David, Photoluminescence investigation of high quality GaAs1−xBix on GaAs. Appl. Phys. Lett. 98(12), 122107 (2011)

    Article  CAS  Google Scholar 

  55. B.-Y. Vahid, T. Thomas, M.-S. Mostafa, MBE growth optimization for GaAs1−xBix and dependence of photoluminescence on growth temperature. Semicond. Sci. Technol. 30(9), 094007 (2015)

    Article  CAS  Google Scholar 

  56. T.B.O. Rockett, R.D. Richards, Y. Gu, F. Harun, Y. Liu, Z. Zhou et al., Influence of growth conditions on the structural and opto-electronic quality of GaAsBi. J. Cryst. Growth 477, 139–143 (2017)

    Article  CAS  Google Scholar 

  57. R.N. Kini, L. Bhusal, A.J. Ptak, R. France, A. Mascarenhas, Electron hall mobility in GaAsBi. J. Appl. Phys. 106(4), 043705 (2009)

    Article  CAS  Google Scholar 

  58. D.A. Beaton, R.B. Lewis, M. Masnadi-Shirazi, T. Tiedje, Temperature dependence of hole mobility in GaAs1−xBix alloys. J. Appl. Phys. 108(8), 083708 (2010)

    Article  CAS  Google Scholar 

  59. R.N. Kini, A.J. Ptak, B. Fluegel, R. France, R.C. Reedy, A. Mascarenhas, Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1−xBix. Phys. Rev. B 83(7), 075307 (2011)

    Article  CAS  Google Scholar 

  60. G. Pettinari, A. Patanè, A. Polimeni, M. Capizzi, X. Lu, T. Tiedje, Bi-induced p-type conductivity in nominally undoped Ga(AsBi). Appl. Phys. Lett. 100(9), 092109 (2012)

    Article  CAS  Google Scholar 

  61. K. Kado, T. Fuyuki, K. Yamada, K. Oe, M. Yoshimoto, High hole mobility in GaAs1−xBix Alloys. Jpn. J. Appl. Phys. 51(4), 040204 (2012)

    Google Scholar 

  62. T. Fuyuki, S. Kashiyama, Y. Tominaga, K. Oe, M. Yoshimoto, Deep-hole traps in p-type GaAs1-xBix grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 50(8), 080203 (2011)

    Article  CAS  Google Scholar 

  63. P.M. Mooney, M.C. Tarun, V. Bahrami-Yekta, T. Tiedje, R.B. Lewis, M. Masnadi-Shirazi, Defect energy levels in p-type GaAsBi and GaAs grown by MBE at low temperatures. Semicond. Sci. Technol. 31(6), 065007 (2016)

    Article  CAS  Google Scholar 

  64. P.M. Mooney, K.P. Watkins, Z. Jiang, A.F. Basile, R.B. Lewis, V. Bahrami-Yekta et al., Deep level defects in n-type GaAsBi and GaAs grown at low temperatures. J. Appl. Phys. 113(13), 133708 (2013)

    Article  CAS  Google Scholar 

  65. D. Dagnelund, J. Puustinen, M. Guina, W.M. Chen, I.A. Buyanova, Identification of an isolated arsenic antisite defect in GaAsBi. Appl. Phys. Lett. 104(5), 052110 (2014)

    Article  CAS  Google Scholar 

  66. L. Gelczuk, J. Kopaczek, T.B.O. Rockett, R.D. Richards, R. Kudrawiec, Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties. Sci. Rep. 7(1), 12824 (2017)

    Article  CAS  Google Scholar 

  67. M.P.J. Punkkinen, P. Laukkanen, M. Kuzmin, H. Levämäki, J. Lång, M. Tuominen et al., Does Bi form clusters in GaAs1−xBix alloys. Semicond. Sci. Technol. 29(11), 115007 (2014)

    Article  CAS  Google Scholar 

  68. G. Luo, S. Yang, G.R. Jenness, Z. Song, T.F. Kuech, D. Morgan, Understanding and reducing deleterious defects in the metastable alloy GaAsBi. NPG Asia Mater. 9(1), e345 (2017)

    Article  CAS  Google Scholar 

  69. G. Pettinari, A. Polimeni, J.H. Blokland, R. Trotta, P.C.M. Christianen, M. Capizzi et al., Compositional dependence of the exciton reduced mass inGaAs1−xBix(x  = 0–10%). Phys. Rev. B 81(23), 235211 (2010)

    Article  CAS  Google Scholar 

  70. G. Pettinari, O. Drachenko, R.B. Lewis, T. Tiedje, Electron effective mass enhancement in Ga(AsBi) alloys probed by cyclotron resonance spectroscopy. Phys. Rev. B 94(23), 235204 (2016)

    Article  Google Scholar 

  71. B. Fluegel, R.N. Kini, A.J. Ptak, D. Beaton, K. Alberi, A. Mascarenhas, Shubnikov-de Haas measurement of electron effective mass in GaAs1−xBix. Appl. Phys. Lett. 99(16), 162108 (2011)

    Article  CAS  Google Scholar 

  72. S.Q. Wang, H.Q. Ye, Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure. Phys. Rev. B 66(23), 235111 (2002)

    Article  CAS  Google Scholar 

  73. R. Alaya, M. Mbarki, A. Rebey, A.V. Postnikov, Ab initio predictions of structure preferences and band gap character in ordered AlAs1-xBix alloys. Curr. Appl. Phys. 16(3), 288–293 (2016)

    Article  Google Scholar 

  74. C. Wang, L. Wang, H. Liang, X. Wu, Y. Zhang, L. Yue et al., Molecular beam epitaxy growth of AlAs1−xBix. Semicond. Sci. Technol. (2018). published online. https://doi.org/10.1088/1361-6641/aacf38

    Article  CAS  Google Scholar 

  75. A. Belabbes, A. Zaoui, M. Ferhat, Lattice dynamics study of bismuth III–V compounds. J. Phys.: Condens. Matter 20(41), 415221 (2008)

    Google Scholar 

  76. B. Amrani, H. Achour, S. Louhibi, A. Tebboune, N. Sekkal, First principles study of AlBi. Solid State Commun. 148(1), 59–62 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yue, L., Zhang, X., Ou, W., Shen, Z., Wang, S. (2019). Molecular Beam Epitaxy Growth and Properties of GaAsBi and AlAsBi. In: Wang, S., Lu, P. (eds) Bismuth-Containing Alloys and Nanostructures. Springer Series in Materials Science, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-13-8078-5_2

Download citation

Publish with us

Policies and ethics