Skip to main content
Book cover

Taurine 11 pp 415–427Cite as

Perinatal Taurine Supplementation Prevents the Adverse Effects of Maternal Dyslipidemia on Growth and Cardiovascular Control in Adult Rat Offspring

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1155))

Abstract

Maternal dyslipidemia induces metabolic and cardiovascular disorders in adult offspring. This study tests the hypothesis that perinatal taurine supplementation prevents the adverse effects of maternal dyslipidemia on growth and cardiovascular function in adult rat offspring. Female Wistar rats were fed normal rat chow and water with (Dyslipidemia) or without dyslipidemia induction (Control) by intraperitoneal Triton WR-1339 injection, three times a week for 4 weeks. The female Control and Dyslipidemia rats were supplemented with (Control+T, Dyslipidemia+T) or without 3% taurine in water from conception to weaning. After weaning, male and female offspring were fed normal rat chow and water throughout the experiment. At 16 weeks of age, body weights significantly increased in male but not female Dyslipidemia compared to other groups, while visceral fat content significantly increased in both male and female Dyslipidemia groups. Further, both sexes displayed similar high fasting blood sugar and normal plasma leptin levels among the groups. While plasma total cholesterol and triglycerides significantly increased only in female Dyslipidemia, low-density lipoprotein cholesterol increased in both male and female Dyslipidemia groups. Mean arterial pressures and heart rates significantly increased, while baroreflex sensitivity decreased in male and female Dyslipidemia compared to all other groups. High-density lipoprotein cholesterol did not significantly different among male or female groups. These changes of the male and female Dyslipidemia group were ameliorated by perinatal taurine supplementation. The present study indicates that perinatal taurine supplementation prevents the adverse effects of maternal dyslipidemia on growth and cardiovascular function in both male and female, adult offspring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   329.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BSHR :

baroreflex sensitivity control of heart rate

Control+T :

Control plus taurine supplementation

Dyslipidemia+T :

Dyslipidemia plus taurine supplementation

HDL-C :

high-density lipoprotein cholesterol

LDL-C :

low-density lipoprotein cholesterol

PHE :

phenylephrine

SNP :

sodium nitroprusside

References

  • Borghi C, Urso R, Cicero AF (2017) Renin-angiotensin system at the crossroad of hypertension and hypercholesterolemia. Nutr Metab Cardiovasc Dis 27:115–120

    Article  CAS  Google Scholar 

  • Christensen JJ et al (2016) LDL cholesterol in early pregnancy and offspring cardiovascular disease risk factors. J Clin Lipidol 10:1369–1378

    Article  Google Scholar 

  • Elahi MM, Cagampang FR, Anthony FW, Curzen N, Ohri SK, Hanson MA (2008) Statin treatment in hypercholesterolemic pregnant mice reduces cardiovascular risk factors in their offspring. Hypertension 51:939–944

    Article  CAS  Google Scholar 

  • Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE (2018) Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. J Am Coll Cardiol 72:330–343

    Article  Google Scholar 

  • Ghio A, Bertolotto A, Resi V, Volpe L, Di CG (2011) Triglyceride metabolism in pregnancy. Adv Clin Chem 55:133–153

    Article  CAS  Google Scholar 

  • Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM (2017) The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol 8:665

    Article  Google Scholar 

  • Herrera E, Ortega-Senovilla H (2014) Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol 15:24–31

    Article  CAS  Google Scholar 

  • Herrera E, Ortega-Senovilla H (2018) Implications of lipids in neonatal body weight and fat mass in gestational diabetic mothers and non-diabetic controls. Curr Diab Rep 18:7

    Article  Google Scholar 

  • Juritsch A, Tsai YT, Patel MS, Rideout TC (2017) Transcriptional control of enterohepatic lipid regulatory targets in response to early cholesterol and phytosterol exposure in apoE(-/-) mice. BMC Res Notes 10:529

    Article  Google Scholar 

  • Mendelson MM, Lyass A, O’Donnell CJ, D’Agostino RB Sr, Levy D (2016) Association of maternal prepregnancy dyslipidemia with adult offspring dyslipidemia in excess of anthropometric, lifestyle, and genetic factors in the Framingham heart study. JAMA Cardiol 1:26–35

    Article  Google Scholar 

  • Murakami S (2017) The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci 186:80–86

    Article  CAS  Google Scholar 

  • Narverud I et al (2011) Children with familial hypercholesterolemia are characterized by an inflammatory imbalance between the tumor necrosis factor alpha system and interleukin-10. Atherosclerosis 214:163–168

    Article  CAS  Google Scholar 

  • Pan WH, Chiang BN (1995) Plasma lipid profiles and epidemiology of atherosclerotic diseases in Taiwan – a unique experience. Atherosclerosis 118:285–295

    Article  CAS  Google Scholar 

  • Petrie JR, Guzik TJ, Touyz RM (2018) Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol 34:575–584

    Article  Google Scholar 

  • Predazzi IM et al (2015) Sex-specific parental effects on offspring lipid levels. J Am Heart Assoc 4:e001951

    Article  Google Scholar 

  • Racasan S, Braam B, van der Giezen DM, Goldschmeding R, Boer P, Koomans HA, Joles JA (2004) Perinatal L-arginine and antioxidant supplements reduce adult blood pressure in spontaneously hypertensive rats. Hypertension 44:83–88

    Article  CAS  Google Scholar 

  • Roysommuti S, Wyss JM (2014) Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 46:57–72

    Article  CAS  Google Scholar 

  • Seravalle G, Grassi G (2016) Sympathetic nervous system, hypertension, obesity and metabolic syndrome. High Blood Press Cardiovasc Prev 23:175–179

    Article  CAS  Google Scholar 

  • Serhiyenko VA, Serhiyenko AA (2018) Cardiac autonomic neuropathy: risk factors, diagnosis and treatment. World J Diabetes 9:1–24

    Article  Google Scholar 

  • Silverio R et al (2017) Lipases and lipid droplet-associated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer. Lipids Health Dis 16:159

    Article  Google Scholar 

  • Szostak-Wegierek D (2014) Intrauterine nutrition: long-term consequences for vascular health. Int J Women’s Health 6:647–656

    Article  Google Scholar 

  • Thaeomor A, Teangphuck P, Chaisakul J, Seanthaweesuk S, Somparn N, Roysommuti S (2017) Perinatal taurine supplementation prevents metabolic and cardiovascular effects of maternal diabetes in adult rat offspring. Adv Exp Med Biol 975:295–305

    Article  CAS  Google Scholar 

  • Wyss JM, Roysommuti S, King K, Kadisha I, Regan CP, Berecek KH (1994) Salt-induced hypertension in normotensive spontaneously hypertensive rats. Hypertension 23:791–796

    Article  CAS  Google Scholar 

  • Wyss JM, Mozaffari MS, Roysommuti S (1995) Contribution of the sympathetic nervous system to salt-sensitivity in lifetime captopril-treated spontaneously hypertensive rats. J Hypertens 13:1037–1042

    Article  CAS  Google Scholar 

  • Yamori Y, Taguchi T, Hamada A, Kunimasa K, Mori H, Mori M (2010) Taurine in health and diseases: consistent evidence from experimental and epidemiological studies. J Biomed Sci 17(Suppl 1):S6

    Article  Google Scholar 

  • Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M (2014) Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep 1:200–208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund (TRF) TRG5880049 and the National Research Council Thailand (NRCT) SUT1-104-59-24-13, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanya Roysommuti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thaeomor, A., Tangnoi, C., Seanthaweesuk, S., Somparn, N., Roysommuti, S. (2019). Perinatal Taurine Supplementation Prevents the Adverse Effects of Maternal Dyslipidemia on Growth and Cardiovascular Control in Adult Rat Offspring. In: Hu, J., Piao, F., Schaffer, S., El Idrissi, A., Wu, JY. (eds) Taurine 11. Advances in Experimental Medicine and Biology, vol 1155. Springer, Singapore. https://doi.org/10.1007/978-981-13-8023-5_39

Download citation

Publish with us

Policies and ethics