Skip to main content

Biodegradation of Polychlorinated Biphenyls

  • Chapter
  • First Online:
Microbial Metabolism of Xenobiotic Compounds

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 10))

Abstract

Polychlorinated biphenyls (PCBs) are organic molecules that are stable in nature. They were widely used in the early 1940s. PCBs have entered the ecosystem due to their wide applications via legal and illegal use. Due to its insoluble nature, these environmental contaminants are persistent in the environment, thereby contaminating different ecosystem. This affects the flora and fauna. The environmental persistence of these chlorinated molecules results mainly in the inability of aquatic fauna and soil biota to utilize the compound at a substantial rate. PCBs pose a toxicological risk to the environment and the human due to its ubiquitous distribution. PCBs are linked with many genetic diseases such as cancers, birth defects, tumours, etc. to name a few. Conventional methods of removal such as incineration or desorption are unsafe, expensive and time consuming. The application of microorganisms in the degradation process of PCBs is an excellent alternative which began in the early 1990s. Much research has been conducted on PCB degradation assisted by the microorganisms to determine the methods by which the degradation rate can be improvised. PCB molecule can be utilized and degraded using the aerobic and the anaerobic method. The route of degradation completely depends on the PCB molecule, type of microbial strain, and the interaction between them. The current book chapter reviews the different ways via which the PCB molecule can be biodegraded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham, J., & Chauhan, R. (2018). Profiling of red pigment produced by Streptomyces sp. JAR6 and its bioactivity. 3 Biotech, 8, 22.

    Google Scholar 

  • Agency for toxic substances and disease registry. (1993). Toxicological profile for selected PCBs; TP-92/16.

    Google Scholar 

  • Ahmad, D. R., Masse, R., Sylvestre, M., & Sandossi, M. (1991). Bioconversion of 2-hydroxy-6-oxo-6-(40 -chlorobi-phenyl) hexa-2,4-dienoic acid: The meta-cleavage product of 4-chloro biphenyl. Journal of General Microbiology, 137, 1375–1385. 2012 J. Borja et al./Process Biochemistry 40 (2005) 1999–2013.

    CAS  Google Scholar 

  • Ahmed, M., & Focht, D. D. (1972). Degradation of polychlorinated biphenyls by two species of Achromobacter. Canadian Journal of Microbiology, 19, 42–82.

    Google Scholar 

  • Albro, P. W., & McKinney, J. D. (1981). The relationship between polarity of polychlorinated biphenyls and their induction of mixed function oxidase activity. Chemico-Biological Interactions, 34, 373–378.

    CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). (2000). Chapter 4: Chemical and physical information for PCBs. http://www.atsdr.cdc.gov/toxprofiles/phs17.html

  • Banks, M. K., Kulakow, P., Schwab, A. P., Chen, Z., & Rathbone, K. (2003). Degradation of crude oil in the rhizosphere of sorghum bicolor. International Journal of Phytoremediation, 5, 225–234.

    CAS  Google Scholar 

  • Baxter, R. A., Gilbert, P. E., Lidgett, R. A., Mainprize, J. H., & Vodden, H. A. (1975). The degradation of polychlorinated biphenyls by microorganisms. Science Total Environment, 4, 53–61.

    CAS  Google Scholar 

  • Bedard, D. L., & Harbel, M. I. (1990). Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyl by eight bacterial strains. Microbial Ecology, 20, 87–102.

    CAS  Google Scholar 

  • Bedard, B. L., Unterman, R., Bopp, L. H., Brennan, M. J., Harbel, M. I., & Johnson, C. (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Applied and Environmental Microbiology, 51, 761–768.

    CAS  Google Scholar 

  • Benvinakatti, B. G., & Ninnebar, H. Z. (1992). Degradation of biphenyl by a Micrococcus species. Applied Microbiology and Biotechnology, 38, 273–275.

    Google Scholar 

  • Boyle, A. W., Silvin, C. J., Hassett, J. P., Nakas, J. P., & Tanenbaum, S. W. (1992). Bacterial PCB biodegradation. Biodegradation, 3, 285–298.

    CAS  Google Scholar 

  • Brown, J., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., & Wagner, R. E. (1987). Polychlorinated biphenyl dechlorination in aquatic sediments. Science, 236, 709–712.

    CAS  Google Scholar 

  • Buczkowski, R., Kondzielski, I., & SzymaÅ„ski, T. (2002). Metodyremediacjiglebzanieczyszczo- nychmetalamiciężkimi. Toruniu: Uniwersytet MikoÅ‚ajaKopernika.

    Google Scholar 

  • Centeno, C., Gallardo, S., & Abella, L. (2003). Alternative technology options for the chemical treatment of polychlorinated biphenyls. Inhenyeriya, 3, 58–68.

    Google Scholar 

  • Chakraborty, P., & Abraham, J. (2017). Comparative study on degradation of norfloxacin and ciprofloxacin by Ganoderma lucidum JAPC1. Korean Journal of Chemical Engineering, 34(4), 1122–1128.

    CAS  Google Scholar 

  • Chaudhry, Q., Blom-Zandstra, M., Gupta, S., & Joner, E. J. (2005). Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environmental Science Pollution Researches, 12, 34–48.

    CAS  Google Scholar 

  • Clark, M. (1997). Health effects of polychlorinated biphenyls. Research Triangle Park: EPA.

    Google Scholar 

  • Clark, R. R., Chian, E. S. K., & Griffin, R. A. (1979). Degradation of polychlorinated biphenyls by mixed microbial cultures. Applied and Environmental Microbiology, 37, 680–685.

    CAS  Google Scholar 

  • Comandeur, L. C. M., May, R. J., Mokross, H., Bedard, D. L., Reinke, W., Harvie, A. J., et al. (1996). Aerobic degradation of polychlorinated biphenyls by Alcaligenes sp. JB1: Metabolites and enzymes. Biodegradation, 7, 435–443.

    Google Scholar 

  • Cookson, J. T., Jr. (1995). Bioremediation engineering: Design and application. New York: McGraw Hill.

    Google Scholar 

  • Cunningham, S. D., Berti, W. R., & Huang, J. W. (1995). Phytoremediation of contaminated soils. Tibtech Journal, 13, 393–397.

    CAS  Google Scholar 

  • Cunningham, S. D., Anderson, T. A., Schwab, A. P., & Hsu, F. C. (1996). Phytoremediation of soils contaminated with organic pollutants. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 56, pp. 55–114). San Diego: Academic Press.

    Google Scholar 

  • Dams, R. I., Paton, G. I., & Killham, K. (2007). Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere, 68, 864–870.

    CAS  Google Scholar 

  • Dobbins, D. C. (1995). Biodegradation of pollutants (Encyclopedia of environmental biology) (Vol. 1). New York: Academic.

    Google Scholar 

  • Doughtery, E. J., McPeters, A. L., Overcash, M. R., & Carbonell, R. G. (1993). Theoretical analysis of a method for in situ decontamination of soil containing 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environmental Science Technology, 27, 505–515.

    Google Scholar 

  • Engwall, M., & Hjelm, K. (2000). Uptake of dioxin-like compounds from sewage sludge into various plant species – Assessment of levels using a sensitive bioassay. Chemosphere, 40, 1189–1195.

    CAS  Google Scholar 

  • Erickson, M. P. (1997). Analytical chemistry of PCBs (2nd ed.). New York: CRC Lewis Publishers.

    Google Scholar 

  • Ferro, A. M., Rock, S. A., Kennedy, J., Herrick, J. J., & Turner, D. L. (1999). Phytoremediation of soils contaminated with wood preservatives: Greenhouse and field evaluations. International Journal of Phytoremediation, 1, 289–306.

    CAS  Google Scholar 

  • Focht, D. D., & Brunner, W. (1985). Kinetics of biphenyl and chlorinated biphenyl metabolism in soil. Applied and Environmental Microbiology, 50, 1058–1063.

    CAS  Google Scholar 

  • Furukawa, K. (1982). Microbial degradation of polychlorinated biphenyls. In A. M. Chakrabarty (Ed.), Biodegradation and detoxification of environmental pollutant. Boca Raton: CRC Press, Inc.

    Google Scholar 

  • Furukawa, K. (1986). Modification of PCBs by bacteria and other microorganisms. In S. Waid John (Ed.), PCBs and the environment (pp. 89–100). Boca Raton: CRC Press.

    Google Scholar 

  • Furukawa, K., & Matsumura, F. (1976). Microbial metabolism of PCBs: Studies on the relative degradability of PCB components by Alcaligenes sp. Agricultural and Food Chemistry, 24, 251–255.

    CAS  Google Scholar 

  • Furukawa, K., Tonomura, K., & Kamibayashi, A. (1978). Effect of chlorine substitution on the biodegradability of polychlorinated biphenyl. Applied and Environmental Microbiology, 35, 223–227.

    CAS  Google Scholar 

  • Gerhard, K. E., Huang, X.-D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176, 20–30.

    Google Scholar 

  • Gianfreda, L., & Rao, M. A. (2004). Potential of extra cellular enzymes in remediation of polluted soils: A review. Enzyme Microbiology Technology Journal, 35, 339–354.

    CAS  Google Scholar 

  • Global chemical treaty (opinion/editorial). Manila Bulletin. June 18, 2001.

    Google Scholar 

  • Gregor, A. W., & Fletcher, J. S. (1988). The influence of increasing chlorine content on the accumulation and metabolism of polychlorinated biphenyls by Pau’s Scarlet Rose cells. Plant Cell Response, 7, 329–332.

    Google Scholar 

  • Holden, P. A., & Firestone, M. K. (1997). Soil microorganisms in soil cleanup: How can we improve our understanding? Journal of Environmental Quality, 26, 32–40.

    CAS  Google Scholar 

  • Holliger, C., Wohlfarth, G., & Diekert, G. (1998). Reductive dechlorination in the energy metabolism of an Jones KC, Burnett V, Duarte-Davidson R and Waterhouse KS (1991) PCBS in the environment. Chemistry in Britain. pp. 435–438. Aerobic bacteria. FEMS Microbiology Reviews, 22, 383–398.

    CAS  Google Scholar 

  • Hülster, A., & Marschner, H. (1993). Transfer of PCDD/PCDF from contaminated soils to food and fodder crop plants. Chemosphere, 27, 439–446.

    Google Scholar 

  • Hülster, A., Mueller, J. F., & Marschner, H. (1994). Soil–plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environmental Science and Technology, 28, 1110–1115.

    Google Scholar 

  • Hutzinger, O. (1974). Chemistry of PCBs. Englewood Cliffs: Westport Publishing Group.

    Google Scholar 

  • Jou, J. J., Chung, J. C., Weng, Y. M., Liawc, S. L., & Wang, M. K. (2007). Identification of dioxin and dioxin-like polychlorbiphenyls in plant tissues and contaminated soils. Journal of Hazardous Material, 149, 174–179.

    CAS  Google Scholar 

  • Katers, R. L. (2000). The history of PCBs, when were health problems detected? Fox River Watch, Clean Water Action Council (CWAC). http://www.foxriverwatch.com

  • Komancova´, M., Jurcˇova´, I., Kocha’nkova´, L., & Burkhard, J. (2003). Metabolic pathways of polychlorinated biphenyls degradation by Pseudomonas sp. 2. Chemosphere, 50, 537–543.

    Google Scholar 

  • Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. J. (2004). Rhizoremediation: A beneficial plant–microbe interaction. Molecular Plant Microbe Interactions, 17, 6–15.

    CAS  Google Scholar 

  • Lamoureux, G. L., & Flear, D. S. (1979). Pesticide metabolism in higher plants: In vitro enzyme studies. In G. D. Paulson, D. S. Frear, & E. P. Marks (Eds.), Xenobiotic metabolism. In vitro methods (American Chemical Society symposium series) (Vol. 97, pp. 263–266). Washington DC: ASC.

    Google Scholar 

  • Laukers, J. D. (1986). Disposal and destruction of waste PCBs. In S. Waid John (Ed.), PCBs and the environment (pp. 83–152). Boca Raton: CRC Press.

    Google Scholar 

  • Lee, K. W. (1995). Practical management of chemicals and hazardous wastes: An environmental and safety professional guide. New Jersey: Prentice Hall.

    Google Scholar 

  • Leigh, M. B., Fletcher, J. S., Fu, X., & Schmitz, F. J. (2002). Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental Science and Technology, 36, 1579–1583.

    CAS  Google Scholar 

  • Leigh, M. B., Prouzovà, P., Mackovà, M., Macek, T., Nagle, D. P., & Fletcher, J. S. (2006). Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB contaminated site. Applied and Environmental Microbiology, 72(4), 2331–2342.

    CAS  Google Scholar 

  • Liu, L., Jiang, C.-Y., Liu, X.-Y., Wu, J.-F., Han, J.-G., & Liu, S.-J. (2007). Plant–microbe association for rhizoremediation of chloronitro aromatic pollutants with Comamonas sp. strain CNB-1. Environmental Microbiology, 9, 465–473.

    CAS  Google Scholar 

  • Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annual Review of Phytopathology, 39, 461–490.

    CAS  Google Scholar 

  • Macek, T., Mackova, M., Brkhar, J., & Demnerova, K. (1998). Introduction of green plants for the control of metals and organics I environmental remediation. In F. W. Holm (Ed.), Effluents from alternative demilitarization technologies (NATO PS series) (pp. 71–85). Gent: Environmental Biotechnology, Technological Institute.

    Google Scholar 

  • Macek, T., Mackova, M., & Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18, 23–34.

    CAS  Google Scholar 

  • Macek, T., Mackova, M., Kucerova, P., Chroma, L., Burkhard, J., & Demnerova, K. (2002). Phytoremediation. In S. N. Agathos & W. Reineke (Eds.), Biotechnology for the environment: Soil remediation (pp. 115–137). Brussels: Kluwer Academic Publishers.

    Google Scholar 

  • Macek, T., Francova, K., Kochankova, L., Lovecka, P., Ryslava, E., Rezek, J., Sura, M., Triska, J., Demnerova, K., & Mackova, M. (2004). Phytoremediation: Biological cleaning of a polluted environment. Reviews on Environmental Health, 19, 63–82.

    CAS  Google Scholar 

  • Mackova, M., Macek, T., Ocenaskova, J., Burkhard, J., Demnerova, K., & Pazlarova, J. (1996). Selection of the potential plant degraders of PCB. ChemickéListy, 90, 712–713.

    CAS  Google Scholar 

  • Mackova, M., Macek, T., Kucerova, P., Burkhard, J., Tiska, J., & Demnerova, K. (1998). Plant tissue cultures in model studies of transformation of polychlorinated biphenyls. Chemical Papers, 52, 599–600.

    CAS  Google Scholar 

  • Mackova, M., Vrchotova, B., Francova, K., Sylvestre, M., Tomaniova, M., Lovecka, P., Demnerova, K., & Macek, M. (2007). Biotransformation of PCBs by plants and bacteria –consequences of plant-microbe interactions. European Journal of Soil Biology, 43, 233–241.

    CAS  Google Scholar 

  • Masse’, R., Messier, F., Peloquin, L., Ayote, C., & Sylvestre, M. (1984). Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyl. Applied and Environmental Microbiology, 47, 947–951.

    Google Scholar 

  • McEldowney, S., Hardman, D. J., & Wait, S. (1993). Pollution: Ecology and biotreatment. New York: Longman Scientific and Technical.

    Google Scholar 

  • Mikszewsk, A. (2004). Emerging technologies for the in situ remediation of PCB contaminated soils and sediments: Bioremediation and nanoscale zero-valent iron. Washington, DC: U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response.

    Google Scholar 

  • Mohn, W. W., & Tiedje, J. M. (1992). Microbial reductive dechlorination. Microbiological Reviews, 56, 482–507.

    CAS  Google Scholar 

  • Morris, P. J., Mohn, W. W., Quensen, J. F., III, Tiedje, J. M., & Boyd, S. A. (1992). Establishment of a PCB degrading enrichment culture with predominantly meta-dechlorination. Applied and Environmental Microbiology, 58, 3088–3094.

    CAS  Google Scholar 

  • National Research Council. (1979). Polychlorinated biphenyls. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Nedunuri, K. V., Govindaraju, R. S., Banks, M. K., Schwab, A. P., & Chen, Z. (2000). Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. Journal of Environmental Engineering, 126, 483–490.

    CAS  Google Scholar 

  • Nemerow, N. L., & Agardy, F. J. (1998). Strategies of industrial and hazardous waste management (pp. 562–563). Van Nostrand: Reinhold.

    Google Scholar 

  • Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Microbiology, 15, 225–230.

    CAS  Google Scholar 

  • Nichols, T. D., Wolf, D. C., Rogers, H. B., Beyrouty, C. A., & Reynolds, C. M. (1997). Rhizosphere microbial populations in contaminated soils. Water, Air, Soil Pollution, 95, 165–178.

    CAS  Google Scholar 

  • O’Riordan, T. (1995). Environmental sciences for environmental management. New York: John Wiley and Sons.

    Google Scholar 

  • Ohtsubo, Y., Kudo, T., Tsuda, M., & Nagata, Y. (2004). Strategies for bioremediation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 65(3), 250–258. https://doi.org/10.1007/s00253-004-1654-y.

    Article  CAS  Google Scholar 

  • Passatore, L., Rossetti, S., Juwarkar, A. A., & Massacci, A. (2014). Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. Journal of Hazardous Materials, 278, 189–202. https://doi.org/10.1016/j.jhazmat.2014.05.051.

    Article  CAS  Google Scholar 

  • Pillai, B. V. S., & Swarup, S. (2002). Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Applied and Environmental Microbiology, 68, 143–151.

    CAS  Google Scholar 

  • Pradhan, S. P., Conrad, J. R., Paterek, J. R., & Srivastava, V. J. (1999). Potential of phytoremediation for treatment of PAHs, in: Rainey PB adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology, 1, 243–257.

    Google Scholar 

  • Quensen, J. F., III, Boyd, S. A., & Tiedje, J. M. (1990). Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Applied and Environmental Microbiology, 56, 2360–2369.

    CAS  Google Scholar 

  • Rahuman, M. S. M. M., Pistone, L., Trifiro, F., & Miertus, S. (2000). Destruction Technology for Polychlorinated Biphenyls (PCBs). ICS-UNIDO Publications “Proceedings of Expert Group Meetings on POPs and Pesticides Contamination: Remediation Technologies (April 2000) and on Clean Technologies for the Reduction and Elimination of POPs May 2000).

    Google Scholar 

  • Rainey, P. B. (1999). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environmental Microbiology, 1, 243–257.

    CAS  Google Scholar 

  • Robinson, S. L., Novak, J. T., Widdowsen, M. A., Crosswell, S. B., & Fetterolf, G. J. (2002). Field and laboratory evaluation of the impact of tall fescue on polyaromatic hydrocarbon degradation in aged creosote-contaminated surface oil. Journal of Environmental Engineering, 129, 232–240.

    Google Scholar 

  • Safe management of PCBs, code of practice. (1989). PCBs core group. Wellington: Hazardous Wastes Task Group.

    Google Scholar 

  • Sawney, B. L. (1986). Chemistry and properties of PCBs in relation to environmental effects. In S. Waid John (Ed.), PCBs and the environment (pp. 47–64). Boca Raton: CRC Press.

    Google Scholar 

  • Schnoor, J. L. (2002). Phytoremediation of Soil and Ground-water, GWRT Series, E-Series: TE-02-01; pp. 1–45.

    Google Scholar 

  • Schnoor, J. L., Licht, L. A., McCutcheon, S. C., Wolfe, N. L., & Carreira, L. H. (1995). Phytoremediation of organic contaminants. Environmental Science and Technology, 29, 318–323.

    Google Scholar 

  • Shimp, J. F., Tracy, J. C., Davis, L. C., Lee, E., Huang, W., Erickson, L. E., & Schnoor, J. L. (1993). Beneficial effects of plants in the remediation of oil and groundwater contaminated with organic materials. Critical Reviews Environmental Science and Technology, 23, 41–77.

    CAS  Google Scholar 

  • Siciliano, S. D., Germida, J. J., Banks, K., & Greer, C. W. (2003). Changes in microbial community com- position and function during a polyaromatic hydrocarbon phytoremediation field trial. Applied Environmental Microbiology, 69, 483–489.

    CAS  Google Scholar 

  • Sierra, I., Valera, J. L., Marina, M. L., & Laborda, F. (2003). Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.). Chemosphere, 53, 609–618.

    CAS  Google Scholar 

  • Singer, A. C. (2004). The chemical ecology of pollutant biodegradation. Bioremediation and phytoremediation from mechanistic and ecological perspectives. In M. Mackova, D. Dowling, & T. Macek (Eds.), Phytoremediation and rhizoremediation. Theoretical back-ground. Focus on biotechnology (pp. 5–21). Dordrecht: Springer.

    Google Scholar 

  • Sullivan, J., & Krieger, G. (1992). Hazardous materials toxicology. Baltimore: Williams and Wilkins Publishing Corp.

    Google Scholar 

  • Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. Ecological Engineering, 18, 647–658.

    Google Scholar 

  • Sylvestre, M. (1985). Total biodegradation of 4-chlorobiphenyl (PCB) by a two-membered bacterial culture. Applied Environmental Biotechnology, 21, 193–197.

    Google Scholar 

  • Sylvestre, M., & Sandossi, M. (1994). Selection of enhanced PCB-degrading bacterial strains for bioremediation: Consideration of branching pathways. In G. R. Chaudhry (Ed.), Biological degradation and remediation of toxic chemicals. New York: Chapman and Hall.

    Google Scholar 

  • Thoma, G. J., Lam, T. B., & Wolf, D. C. (2003). A mathematical model of phytoremediation for petroleum contaminated soil: Sensitivity analysis. International Journal of Phytoremedation, 5, 125–136.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency. (1996). PCBs: A cancer dose-response assessment and applications to environmental mixtures, EPA/600/P96/001F.

    Google Scholar 

  • UNEP. (1999). Chemicals Guidelines for the identification of PCBs and materials containing PCBs. First issue, Inter-organization program for the sound management of chemicals.

    Google Scholar 

  • Unterman, R., Bedard, D. L., Brennan, M. J., Bopp, L. H., Mondello, F. J., Brooks, R. E., et al. (1988). Biological approaches for PCB degradation. In: Reducing risk from environmental chemicals through biotechnology. New York: Plenum Press.

    Google Scholar 

  • Van den Berg, M., Birnbaum, L., Denison, M., & Farland, W. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicology Science, 93, 223–241.

    Google Scholar 

  • Vasilyeva, G. K., & Strijakova, E. R. (2007). Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology, 76(6), 639–653. https://doi.org/10.1134/S002626170706001X.

    Article  CAS  Google Scholar 

  • Vervaeke, P., Luyssaert, S., Mertens, J., Meers, E., Tack, F. M., & Lust, N. (2003). Phytoremediation prospects of willow stands on contaminated sediments: A field trial. Environmental Pollution, 126, 27–282.

    Google Scholar 

  • Watts, R. J. (1998). Hazardous wastes: Sources, pathways, receptors. New York: John Wiley and Sons.

    Google Scholar 

  • Whipps, J. M. (1990). Carbon economy. In J. M. Lynch (Ed.), The rhizosphere (pp. 59–97). New York: Wiley.

    Google Scholar 

  • White, P. M., Jr., Wolf, D. C., Thoma, G. J., & Reynolds, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollution, 169, 207–220.

    CAS  Google Scholar 

  • Wiegel, J., & Wu, Q. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology, 32, 1–15. J. Borja et al. /Process Biochemistry 40 (2005) 1999–2013 2011.

    CAS  Google Scholar 

  • Yagi, D., & Sudo, R. (1980). Degradation of polychlorinated biphenyls by microorganisms. Water Pollution Control Federation, 52, 1035–1043.

    CAS  Google Scholar 

  • Yateem, A., Al-Sharrah, T., & Bin-Haji, A. (2007). Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil and Sedimentation Contamination, 16, 269–280.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, S., Abraham, J. (2019). Biodegradation of Polychlorinated Biphenyls. In: Arora, P. (eds) Microbial Metabolism of Xenobiotic Compounds. Microorganisms for Sustainability, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-13-7462-3_13

Download citation

Publish with us

Policies and ethics