Skip to main content

Tissue “Hypoxia” and the Maintenance of Leukemia Stem Cells

  • Chapter
  • First Online:
Leukemia Stem Cells in Hematologic Malignancies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1143))

Abstract

The relationship of the homing of normal hematopoietic stem cells (HSC) in the bone marrow to specific environmental conditions, referred to as the stem cell niche (SCN), has been intensively studied over the last three decades. These conditions include the action of a number of molecular and cellular players, as well as critical levels of nutrients, oxygen and glucose in particular, involved in energy production. These factors are likely to act also in leukemias, due to the strict analogy between the hierarchical structure of normal hematopoietic cell populations and that of leukemia cell populations. This led to propose that leukemic growth is fostered by cells endowed with stem cell properties, the leukemia stem cells (LSC), a concept readily extended to comprise the cancer stem cells (CSC) of solid tumors. Two alternative routes have been proposed for CSC generation, that is, the oncogenic staminalization (acquisition of self-renewal) of a normal progenitor cell (the “CSC in normal progenitor cell” model) and the oncogenic transformation of a normal (self-renewing) stem cell (the “CSC in normal stem cell” model). The latter mechanism, in the hematological context, makes LSC derive from HSC, suggesting that LSC share SCN homing with HSC. This chapter is focused on the availability of oxygen and glucose in the regulation of LSC maintenance within the SCN. In this respect, the most critical aspect in view of the outcome of therapy is the long-term maintenance of the LSC subset capable to sustain minimal residual disease and the related risk of relapse of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoggatt J, Scadden DT (2012) The stem cell niche: tissue physiology at a single cell level. J Clin Invest 122:3029–3034. https://doi.org/10.1172/JCI60238.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rafalski VA, Mancini E, Brunet A (2012) Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 125:5597–5608. https://doi.org/10.1242/jcs.114827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 7:730–737. https://doi.org/10.1038/nm0797-730

    Article  Google Scholar 

  4. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648. https://doi.org/10.1038/367645a0

    Article  CAS  Google Scholar 

  5. Zagozdzon R, Golab J (2015) Cancer stem cells in haematological malignancies. Contemp Oncol 19:A1–A6. https://doi.org/10.5114/wo.2014.47127

    Article  Google Scholar 

  6. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Stem Cells 414:105–111. https://doi.org/10.1007/978-1-60327-933-8

    Article  CAS  Google Scholar 

  7. Giuntoli S, Rovida E, Barbetti V, Cipolleschi M-G, Olivotto M, Dello Sbarba P (2006) Hypoxia suppresses BCR/Abl and selects Imatinib-insensitive progenitors within clonal CML population. Leukemia 20:1291–1293. PMID: 16710305

    Article  CAS  Google Scholar 

  8. Schepers K, Campbell TB, Passegué E (2015) Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16:254–267. https://doi.org/10.1016/j.stem.2015.02.0147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390

    Article  CAS  Google Scholar 

  10. Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 81:675–684. https://doi.org/10.1016/S0006-3495(01)75733-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chow DC, Wenning LA, Miller WM, Papoutsakis ET (2001) Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J 81:685–696. https://doi.org/10.1016/S0006-3495(01)75733-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tondevold E, Eriksen J, Jansen E (1979) Observations on long bone medullary pressures in relation to arterial PO2, PCO2 and pH in the anaesthetized dog. Acta Orthop Scand 50:645–651

    Article  CAS  Google Scholar 

  13. Ivanović Z (2009) Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol 219:271–275

    Article  Google Scholar 

  14. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25; PMID:747780

    CAS  PubMed  Google Scholar 

  15. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299

    Article  CAS  Google Scholar 

  16. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al (2003) Identification of the hematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  CAS  Google Scholar 

  17. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the hematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  Google Scholar 

  18. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104:5431–5436

    Article  CAS  Google Scholar 

  19. Jing D, Wobus M, Poitz DM, Bornhauser M, Ehninger G, Ordemann R (2012) Oxygen tension plays a critical role in the hematopoietic microenvironment in vitro. Haematologica 97:331–339. https://doi.org/10.3324/haematol.2011.050815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guitart AV, Hammoud M, Dello Sbarba P, Ivanović Z, Praloran V (2010) Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp Hematol 38:847–851. PMID:20547202. https://doi.org/10.1016/j.exphem.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  21. Cipolleschi MG, Dello Sbarba P, Olivotto M (1993) The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 82:2031–2037

    CAS  PubMed  Google Scholar 

  22. Cipolleschi MG, D’Ippolito G, Bernabei PA, Caporale R, Nannini R, Mariani M et al (1997) Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol 25:1187–1194

    CAS  PubMed  Google Scholar 

  23. Ivanović Z, Dello Sbarba P, Trimoreau F, Faucher JL, Praloran V (2000) Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 40:1482–1488

    Article  Google Scholar 

  24. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135

    Article  CAS  Google Scholar 

  25. Broxmeyer HE, O’Leary HA, Huang X, Mantel C (2015) The importance of hypoxia and EPHOSS for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex-vivo. Curr Opin Hematol 22:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Koumenis C, Wouters BG (2006) “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res 4:423–436

    Article  CAS  Google Scholar 

  27. Zhang H, Li H, Xi HS, Li S (2012) HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 119:2595–2607

    Article  CAS  Google Scholar 

  28. Cipolleschi MG, Rovida E, Ivanović Z, Praloran V, Olivotto M, Dello Sbarba P (2000) The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability. Leukemia 14:735–739. PMID: 10764163

    Article  CAS  Google Scholar 

  29. Ivanović Z, Belloc F, Faucher JL, Cipolleschi MG, Praloran V, Dello Sbarba P (2002) Hypoxia maintains and interleukin-3 reduces the pre-colony-forming cell potential of dividing CD34(+) murine bone marrow cells. Exp Hematol 30:67–73

    Article  Google Scholar 

  30. Hermitte F, Brunet de la Grange P, Belloc F, Praloran V, Ivanovic Z (2006) Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 24:65–73

    Article  Google Scholar 

  31. Guitart AV, Debeissat C, Hermitte F, Villacreces A, Ivanović Z, Boeuf H, Praloran V (2011) Very low oxygen concentration (0.1%) reveals two FDCP-Mix cell subpopulations that differ by their cell cycling, differentiation and p27KIP1 expression. Cell Death Differ 18:174–182

    Article  CAS  Google Scholar 

  32. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM et al (2014) Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 508:269–273. https://doi.org/10.1038/nature13034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giuntoli S, Rovida E, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P (2006) Hypoxia suppresses BCR/Abl and selects imatinib-insensitive progenitors within clonal CML populations. Leukemia 20:1291–1293

    Article  CAS  Google Scholar 

  34. Giuntoli S, Rovida E, Gozzini A, Barbetti V, Cipolleschi MG, Olivotto M, Dello Sbarba P (2007) Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells. Stem Cells 25:1119–1125

    Article  CAS  Google Scholar 

  35. Cheloni G, Poteti M, Bono S, Masala E, Mazure NM, Rovida E et al (2017) The leukemic stem cell niche: adaptation to “hypoxia” versus oncogene addiction. Stem Cells Int 2017:4979474. https://doi.org/10.1155/2017/4979474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A 93:9493–9498

    Article  CAS  Google Scholar 

  37. Pettersen EO, Juul NO, Rønning OW (1986) Regulation of protein metabolism of human cells during and after acute hypoxia. Cancer Res 46:4346–4351

    CAS  PubMed  Google Scholar 

  38. Liu L, Simon MC (2004) Regulation of transcription and translation by hypoxia. Cancer Biol Ther 3:492–497

    Article  CAS  Google Scholar 

  39. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E (1998) Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18:3112–3119

    Article  CAS  Google Scholar 

  40. Bono S, Lulli M, D’Agostino VG, Di Gesualdo F, Loffredo R, Cipolleschi MG et al (2016) Different BCR/Abl protein suppression patterns as a converging trait of chronic myeloid leukemia cell adaptation to energy restriction. Oncotarget 7:84810–84825

    Article  Google Scholar 

  41. Giuntoli S, Tanturli M, Di Gesualdo F, Barbetti V, Rovida E, Dello Sbarba P (2011) Glucose availability in hypoxia regulates the selection of Chronic Myeloid Leukaemia progenitor subsets with different resistance to Imatinib-mesylate. Haematologica 96:204–212. PMID:21071498. https://doi.org/10.3324/haematol.2010.029082

    Article  CAS  PubMed  Google Scholar 

  42. Sharma SV, Settleman J (2010) Exploiting the balance between life and death: targeted cancer therapy and “oncogenic shock”. Biochem Pharmacol 80:666–673

    Article  CAS  Google Scholar 

  43. Meyer N, Kim SS, Penn LZ (2006) The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol 16:275–287

    Article  CAS  Google Scholar 

  44. Li B, Simon MC (2013) Molecular pathways: targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 19:5835–5841. https://doi.org/10.1158/1078-0432.CCR-12-3629

    Article  CAS  PubMed  Google Scholar 

  45. Quesenberry PJ, Colvin GA, Lambert JF (2002) The chiaroscuro stem cell: a unified stem cell theory. Blood 100:4266–4271

    Article  CAS  Google Scholar 

  46. Jiang X, Ng E, Yip C, Eisterer W, Chalandon Y, Stuible M et al (2002) Primitive interleukin-3-null hematopoietic cells transduced with BCR-ABL show accelerated loss after culture of factor-independence in vitro and leukemogenic activity in vivo. Blood 100:3731–3740

    Article  CAS  Google Scholar 

  47. Tannock IF (1968) The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br J Cancer 22:258–273

    Article  CAS  Google Scholar 

  48. Deynoux M, Sunter N, Hérault O, Mazurier F (2016) Hypoxia and hypoxia-inducible factors in leukemias. Front Oncol 6:41. https://doi.org/10.3389/fonc.2016.00041

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cipolleschi MG, Rovida E, Dello Sbarba P (2013) The culture-repopulating ability assays and incubation in low oxygen: a simple way to test drugs on leukemia stem or progenitor cells. Curr Pharm Des 19:5374–5383. PMID: 23394087

    Article  CAS  Google Scholar 

  50. Rovida E, Marzi I, Cipolleschi MG, Dello Sbarba P (2014) One more stem cell niche: how the sensitivity of chronic myeloid leukemia cells to imatinib-mesylate is modulated within a “hypoxic” environment. Hypoxia 2:1–10. PMID: 27774462

    PubMed  PubMed Central  Google Scholar 

  51. Rovida E, Peppicelli S, Bono S, Bianchini F, Tusa I, Cheloni G et al (2014) The metabolically-modulated stem cell niche: a dynamic scenario regulating cancer cell phenotype and resistance to therapy. Cell Cycle 13:3169–3175. PMID: 25485495. https://doi.org/10.4161/15384101.2014.964107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, Lévesque JP (2010) Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 116:375–385

    Article  CAS  Google Scholar 

  53. Lévesque JP, Winkler IG (2011) Hierarchy of immature hematopoietic cells related to blood flow and niche. Curr Opin Hematol 18:220–225

    Article  Google Scholar 

  54. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotech 25:1315–1321

    Article  CAS  Google Scholar 

  55. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322:1861–1865

    Article  CAS  Google Scholar 

  56. Savona M, Talpaz M (2008) Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 8:341–350

    Article  CAS  Google Scholar 

  57. Modi H, McDonald T, Chu S, Yee JK, Forman SJ, Bhatia R (2007) Role of BCR/ABL gene-expression levels in determining the phenotype and imatinib sensitivity of transformed human hematopoietic cells. Blood 109:5411–5421

    Article  CAS  Google Scholar 

  58. Kumari A, Brendel C, Hochhaus A, Neubauer A, Burchert A (2012) Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. Blood 119:530–539

    Article  CAS  Google Scholar 

  59. Mahon F-X, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al (2010) Intergroupe Français des Leucémies Myéloïdes Chroniques. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre STop IMatinib (STIM) trial. Lancet Oncol 11:1029–1035

    Article  CAS  Google Scholar 

  60. Graham SM, Jørgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325

    Article  CAS  Google Scholar 

  61. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2010) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121:396–409

    Article  Google Scholar 

  62. Perl A, Carroll M (2011) BCR-ABL kinase is dead; long live the CML stem cell. J Clin Invest 121:22–25

    Article  CAS  Google Scholar 

  63. Donato NJ, Wu JY, Stapley J, Lin H, Arlinghaus R, Aggarwal BB et al (2004) Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia. Cancer Res 64:672–677, erratum in: Cancer Res. 2004;64:2306

    Article  CAS  Google Scholar 

  64. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107:4532–4539

    Article  CAS  Google Scholar 

  65. Konig H, Holtz M, Modi H, Manley P, Holyoake TL, Forman SJ, Bhatia R (2008) Enhanced BCR-ABL kinase inhibition does not result in increased inhibition of downstream signaling pathways or increased growth suppression in CML progenitors. Leukemia 22:748–755

    Article  CAS  Google Scholar 

  66. Cheloni G, Tanturli M, Tusa I, DeSouza NH, Shan Y, Gozzini A et al (2017) Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood 130:655–665. PMID: 28576876. https://doi.org/10.1182/blood-2016-10-745588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pettit K, Stock W, Walter RB (2016) Incorporating measurable (‘minimal’) residual disease-directed treatment strategies to optimize outcomes in adults with acute myeloid leukemia. Leuk Lymphoma 57:1527–1533. https://doi.org/10.3109/10428194.2016.1160085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Del Poggetto E, Tanturli M, Ben-Califa N, Gozzini A, Tusa I, Cheloni G et al (2015) Salarin C inhibits the maintenance of chronic myeloid leukemia progenitor cells. Cell Cycle 14:3146–3154. PMID: 26291130. https://doi.org/10.1080/15384101.2015.1078029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Matsunaga T, Imataki O, Torii E, Kameda T, Shide K, Shimoda H et al (2012) Elevated HIF-1α expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy. Leuk Res 36:e122–e124. https://doi.org/10.1016/j.leukres.2012.02.028

    Article  CAS  PubMed  Google Scholar 

  70. Drolle H, Wagner M, Vasold J, Kütt A, Deniffel C, Sotlar K et al (2015) Hypoxia regulates proliferation of acute myeloid leukemia and sensitivity against chemotherapy. Leuk Res 39:779–785. https://doi.org/10.1016/j.leukres.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  71. Coltella N, Percio S, Valsecchi R, Cuttano R, Guarnerio J, Ponzoni M et al (2014) HIF factors cooperate with PML-RARα to promote acute promyelocytic leukemia progression and relapse. EMBO Mol Med 6:640–650. https://doi.org/10.1002/emmm.201303065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y (2011) Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411. https://doi.org/10.1016/j.stem.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Liu Y, Tang F, Bernot KM, Schore R, Marcucci G et al (2014) Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effects on hematopoietic stem cells. Blood 124:1127–1136. https://doi.org/10.1182/blood-2013-12-544221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Coltella N, Valsecchi R, Ponente M, Ponzoni M, Bernardi R (2015) Synergistic leukemia eradication by combined treatment with retinoic acid and HIF inhibition by EZN-2208 (PEG-SN38) in preclinical models of PML-RAR and PLZF-RAR-driven leukemia. Clin Cancer Res 21:3685–3694. https://doi.org/10.1158/1078-0432.CCR-14-3022

    Article  CAS  PubMed  Google Scholar 

  75. Kawada H, Kaneko M, Sawanobori M, Uno T, Matsuzawa H, Nakamura Y et al (2013) High concentrations of l-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1α transcription. PLoS One 8:e62717. https://doi.org/10.1371/journal.pone.0062717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Portwood S, Lal D, Hsu YC, Vargas R, Johnson MK, Wetzler M et al (2013) Activity of the hypoxia-activated prodrug, TH-302, in preclinical human acute myeloid leukemia models. Clin Cancer Res 19:6506–6519. https://doi.org/10.1158/1078-0432.CCR-13-0674

    Article  CAS  PubMed  Google Scholar 

  77. Patterson AV, Ferry DM, Edmunds SJ, Gu Y, Singleton RS, Patel K et al (2007) Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res 13:3922–3932. https://doi.org/10.1158/1078-0432.CCR-07-0478

    Article  CAS  PubMed  Google Scholar 

  78. Konopleva M, Thall PF, Yi CA, Borthakur G, Coveler A, Bueso-Ramos C et al (2015) Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia. Haematologica 100:927–934. https://doi.org/10.3324/haematol.2014.118455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chen Y, Hu Y, Zhang H, Peng C, Li S (2009) Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet 41:783–792

    Article  CAS  Google Scholar 

  80. Chen Y, Li D, Li S (2009) The Alox5 gene is a novel therapeutic target in cancer stem cells of chronic myeloid leukemia. Cell Cycle 8:3488–3492

    Article  CAS  Google Scholar 

  81. Chen Y, Shan Y, Lu M, DeSouza NH, Guo Z, Hoffman R, Liang A, Li S (2017) Alox5 Blockade Eradicates JAK2V617F-induced polycythemia Vera in Mice. Cancer Res 77:164–174.https://doi.org/10.1158/0008-5472.CAN-15-2933

    Article  CAS  PubMed  Google Scholar 

  82. Chen Y, Peng C, Abraham SA, Shan Y, Guo Z, Desouza N et al (2014) Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival. J Clin Invest 124:3847–3862. https://doi.org/10.1172/JCI66129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen Y, Hu Y, Michaels S, Segal D, Brown D, Li S (2009) Inhibitory effects of omacetaxine on leukemic stem cells and BCR-ABL-induced chronic myeloid leukemia and acute lymphoblastic leukemia in mice. Leukemia 23:1446–1454. https://doi.org/10.1038/leu.2009.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779

    Article  CAS  Google Scholar 

  85. Copland M, Pellicano F, Richmond L, Allan EK, Hamilton A, Lee FY, Weinmann R, Holyoake TL (2008) BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood 111:2843–2853. PMID: 18156496

    Article  CAS  Google Scholar 

  86. Tusa I, Cheloni G, Poteti M, Gozzini A, DeSouza NH, Shan Y et al (2018) Targeting the extracellular signal-regulated kinase 5 pathway to suppress human chronic myeloid leukemia stem cells. Stem Cell Reports 11:929–943

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Persio Dello Sbarba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dello Sbarba, P., Cheloni, G. (2019). Tissue “Hypoxia” and the Maintenance of Leukemia Stem Cells. In: Zhang, H., Li, S. (eds) Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine and Biology, vol 1143. Springer, Singapore. https://doi.org/10.1007/978-981-13-7342-8_6

Download citation

Publish with us

Policies and ethics