Skip to main content

Chitinous Structures as Potential Targets for Insect Pest Control

  • Chapter
  • First Online:
Targeting Chitin-containing Organisms

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1142))

Abstract

Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrangi S, Faramarzi MA (2013) From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 31(8):1786–1795

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Rajamani V, Reddy VS, Mukherjee SK, Bhatnagar RK (2015) Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology. Transgenic Res 24(5):791–801

    Article  CAS  PubMed  Google Scholar 

  • Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ et al (2014) Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem Mol Biol 49:24–34

    Article  CAS  PubMed  Google Scholar 

  • Andersen OA, Dixon MJ, Eggleston IM, van Aalten DM (2005) Natural product family 18 chitinase inhibitors. Nat Prod Rep 22(5):563–579

    Article  CAS  PubMed  Google Scholar 

  • Arai N, Shiomi K, Iwai Y, Omura S (2000a). Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J Antibiot (Tokyo) 53(6): 609–614

    Google Scholar 

  • Arai N, Shiomi K, Yamaguchi Y, Masuma R, Iwai Y, Turberg A et al (2000b) Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO-7314. Chem Pharm Bull (Tokyo) 48(10):1442–1446

    Article  CAS  Google Scholar 

  • Arakane Y, Dixit R, Begum K, Park Y, Specht CA, Merzendorfer H et al (2009) Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39(5–6):355–365

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Furuta Y, Miyazawa M, Kato M (2002) Flufenoxuron, an insect growth regulator, promotes peroral infection by nucleopolyhedrovirus (BmNPV) budded particles in the silkworm, Bombyx mori L. J Virol Methods 100:141–147

    Article  CAS  PubMed  Google Scholar 

  • Bao W, Cao B, Zhang Y, Wuriyanghan H (2016) Silencing of Mythimna separata chitinase genes via oral delivery of in planta-expressed RNAi effectors from a recombinant plant virus. Biotech Lett 38(11):1961–1966

    Article  CAS  Google Scholar 

  • Blattner R, Furneaux RH, Kemmitt T, Tyler PC, Ferrier RJ, Tidén A-K (1994) Syntheses of the fungicide/insecticide allosamidin and a structural isomer. J Chem Soc Perkin Trans 1(23):3411–3421

    Article  Google Scholar 

  • Casida JE, Durkin KA (2017) Pesticide chemical research in toxicology: lessons from nature. Chem Res Toxicol 30(1):94–104

    Article  CAS  PubMed  Google Scholar 

  • Casu R, Eisemann C, Pearson R, Riding G, East I, Donaldson A et al (1997) Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host. Proc Natl Acad Sci USA 94(17):8939–8944

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yang H, Tang B, Yang W-J, Jin D-C (2017a) Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comp Biochem Physiol B Biochem Mol Biol 208–209:19–28

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu T, Duan Y, Lu X, Yang Q (2017b) Microbial secondary metabolite, Phlegmacin B1, as a novel inhibitor of insect chitinolytic enzymes. J Agric Food Chem 65(19):3851–3857

    Article  CAS  PubMed  Google Scholar 

  • Chen P-J, Senthilkumar R, Jane W-N, He Y, Tian Z, Yeh K-W (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12(4):503–515

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Tian H, Zou L, Tang B, Hu J, Zhang W (2008) Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bull Entomol Res 98(6):613–619

    Article  CAS  PubMed  Google Scholar 

  • Chikate YR, Dawkar VV, Barbole RS, Tilak PV, Gupta VS, Giri AP (2016) RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera. Pestic Biochem Physiol 133:44–51

    Article  CAS  PubMed  Google Scholar 

  • Cillo F, Palukaitis P (2014) Transgenic resistance. Adv Virus Res 90:35–146

    Article  CAS  PubMed  Google Scholar 

  • Cohen E (1982) Chitin synthetase activity and inhibition in different insect microsomal preparations. EXS 41:470–472

    Google Scholar 

  • Cohen E (2010) Chitin biochemistry: synthesis, hydrolysis and inhibition. In: Casas J, Simpson SJ (eds) Advances in insect physiology: insect integument and colour, vol 38, pp 5–74

    Google Scholar 

  • Cornman RS, Willis JH (2008) Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. Insect Biochem Mol Biol 38(6):661–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC et al (2007) The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res 17(4):557–571

    Article  CAS  PubMed  Google Scholar 

  • da Silva MV, Santi L, Staats CC, da Costa AM, Colodel EM, Driemeier D et al (2005) Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol 156(3):382–392

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Baisakh N, Maung Thet K, Tu J, Datta S (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • de la Vega H, Specht CA, Liu Y, Robbins PW (1998) Chitinases are a multi-gene family in Aedes, Anopheles and Drosophila. Insect Mol Biol 7(3):233–239

    Article  PubMed  Google Scholar 

  • Derksen AC, Granados RR (1988) Alteration of a lepidopteran peritrophic membrane by baculoviruses and enhancement of viral infectivity. Virology 167(1):242–250

    Article  CAS  PubMed  Google Scholar 

  • Despres L, Stalinski R, Faucon F, Navratil V, Viari A, Paris M et al (2014a) Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito. Biol Lett 10(12):20140716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Despres L, Stalinski R, Tetreau G, Paris M, Bonin A, Navratil V et al (2014b). Gene expression patterns and sequence polymorphisms associated with mosquito resistance to Bacillus thuringiensis israelensis toxins. BMC Genom 15:926

    Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD et al (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Luo Z, Xia L, Gao B, Sun Y, Zhang Y (2008) Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56(5):442–446

    Article  CAS  PubMed  Google Scholar 

  • Dittmer NT, Tetreau G, Cao X, Jiang H, Wang P, Kanost MR (2015) Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 62:100–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit R, Arakane Y, Specht CA, Richard C, Kramer KJ, Beeman RW et al (2008) Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem Mol Biol 38(4):440–451

    Article  CAS  PubMed  Google Scholar 

  • Dong B, Miao G, Hayashi S (2014) A fat body-derived apical extracellular matrix enzyme is transported to the tracheal lumen and is required for tube morphogenesis in Drosophila. Development 141(21):4104–4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, van Leeuwen T et al (2016) Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proc Natl Acad Sci 113(51):14692–14697

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Liu T, Zhou Y, Dou T, Yang Q (2018) Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine. J Biol Chem 293(40):15429–15438

    Article  CAS  PubMed  Google Scholar 

  • East IJ, Fitzgerald CJ, Pearson RD, Donaldson RA, Vuocolo T, Cadogan LC et al (1993) Lucilia cuprina: inhibition of larval growth induced by immunization of host sheep with extracts of larval peritrophic membrane. Int J Parasitol 23(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Ganbaatar O, Cao B, Zhang Y, Bao D, Bao W, Wuriyanghan H (2017) Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol 17(1):9

    Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ et al (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breeding 3(1):49–63

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Down RE, Powell KS, Sauvion N, Rahbé Y, Newell CA et al (1996) Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomologia Experimentalis Et Applicata 79:295–307

    Google Scholar 

  • Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31(1):57–73

    Article  CAS  Google Scholar 

  • Guan X, Middlebrooks BW, Alexander S, Wasserman SA (2006) Mutation of TweedleD, a member of an unconventional cuticle protein family, alters body shape in Drosophila. Proc Natl Acad Sci 103(45):16794–16799

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Li GX, Pang Y, Wang P (2005) A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35(11):1224–1234

    Article  CAS  PubMed  Google Scholar 

  • Hansen IA, Tian H, Peng H, Yao Q, Chen H, Xie Q et al (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE 4(7):e6225

    Article  CAS  Google Scholar 

  • Harper MS, Hopkins TL, Czapla TH (1998) Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30(2):166–176

    Article  CAS  PubMed  Google Scholar 

  • Hartl L, Zach S, Seidl-Seiboth V (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol 93(2):533–543

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Corsaro BG, Granados RR (1991) Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusia ni granulosis virus. J Gen Virol 72(Pt 11):2645–2651

    Article  CAS  PubMed  Google Scholar 

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  CAS  PubMed  Google Scholar 

  • Hogenkamp DG, Arakane Y, Kramer KJ, Muthukrishnan S, Beeman RW (2008) Characterization and expression of the beta-N-acetylhexosaminidase gene family of Tribolium castaneum. Insect Biochem Mol Biol 38(4):478–489

    Article  CAS  PubMed  Google Scholar 

  • Hopkins TL, Harper MS (2001) Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 47(2):100–109

    Article  CAS  PubMed  Google Scholar 

  • Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ (2014) CutProtFam-Pred: Detection and classification of putative structural cuticular proteins from sequence alone, based on profile Hidden Markov Models. Insect Biochem Mol Biol 52:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumida H, Imamura N, Sano H (1996) A novel chitinase inhibitor from a marine bacterium, Pseudomonas sp. J Antibiot (Tokyo) 49(1):76–80

    Article  CAS  Google Scholar 

  • Jalil SU, Mishra M, Ansari MI (2015) Current view on chitinase for plant defence. Trends in Biosciences 8(24):6733–6743

    Google Scholar 

  • Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S (2010) Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40(3):214–227

    Article  CAS  PubMed  Google Scholar 

  • Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S (2012) Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions. PLoS One 7(11):e49844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Singh ND, Li L, Zhang X, Daniell H (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13(3):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato N, Mueller CR, Fuchs JF, Wessely V, Lan Q, Christensen BM (2006) Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect Biochem Mol Biol 36(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Shizuri Y, Izumida H, Yokoyama A, Endo M (1995) Styloguanidines, new chitinase inhibitors from the marine sponge Stylotella aurantium. Tetrahedron Lett 36:2133–2136

    Article  CAS  Google Scholar 

  • Kelkenberg M, Odman-Naresh J, Muthukrishnan S, Merzendorfer H (2015) Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochem Mol Biol 56:21–28

    Article  CAS  PubMed  Google Scholar 

  • Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY (2010) A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40(8):621–629

    Article  CAS  PubMed  Google Scholar 

  • Koganemaru R, Miller DM, Adelman ZN (2013) Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic Biochem Physiol 106(3):190–197

    Article  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: Molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27(11):887–900

    Article  CAS  PubMed  Google Scholar 

  • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci 108(38):15966–15971

    Article  PubMed  Google Scholar 

  • Kuraishi T, Hori A, Kurata S (2013) Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol 4:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Google Scholar 

  • Lawrence SD, Novak NG (2006) Expression of poplar chitinase in tomato leads to inhibition of development in colorado potato beetle. Biotech Lett 28(8):593–599

    Article  CAS  Google Scholar 

  • Lee J-B, Kim HS, Park Y (2017) Down-regulation of a chitin synthase a gene by RNA interference enhances pathogenicity of Beauveria bassiana ANU1 against Spodoptera exigua (HÃœBNER). Arch Insect Biochem Physiol 94(2):e21371

    Article  CAS  Google Scholar 

  • Lepore LS, Roelvink PR, Granados RR (1996) Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease. J Invertebr Pathol 68(2):131–140

    Article  CAS  PubMed  Google Scholar 

  • Lertcanawanichakul M, Wiwat C, Bhumiratana A, Dean DH (2004) Expression of chitinase-encoding genes in Bacillus thuringiensis and toxicity of engineered B. thuringiensis subsp. aizawai toward Lymantria dispar larvae. Curr Microbiol 48(3):175–181

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y et al (2015) Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46–54

    Article  CAS  PubMed  Google Scholar 

  • Luschnig S, Batz T, Armbruster K, Krasnow MA (2006) Serpentine and vermiform encode matrix proteins with chitin binding and deacetylation domains that limit tracheal tube length in Drosophila. Curr Biol 16(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Macedo LLP, de Souza Antonino, Junior JD, Coelho RR, Fonseca FCA, Firmino AAP, Silva MCM et al (2017) Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. Biotechnol Res Innovat 1(1):72–86

    Article  Google Scholar 

  • Mamta Reddy KRK, Rajam MV (2015) Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90(3):281–292

    Article  CAS  PubMed  Google Scholar 

  • Marx JL (1977) Chitin synthesis inhibitors: new class of insecticides. Science 197(4309):1170–1172

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer H (2006) Insect chitin synthases: a review. J Comparat Physiol B-Biochem Syst Environ Physiol 176(1):1–15

    Article  CAS  Google Scholar 

  • Merzendorfer H (2013) Chitin synthesis inhibitors: old molecules and new developments. Insect Sci 20(2):121–138

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer H, Kim HS, Chaudhari SS, Kumari M, Specht CA, Butcher S et al (2012) Genomic and proteomic studies on the effects of the insect growth regulator diflubenzuron in the model beetle species Tribolium castaneum. Insect Biochem Mol Biol 42(4):264–276

    Article  CAS  PubMed  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206(24):4393–4412

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AMA, Diab MR, Abdelsattar M, Khalil SMS (2017) Characterization and RNAi-mediated knockdown of chitin synthase A in the potato tuber moth, Phthorimaea operculella. Sci Rep 7(1):9502

    Google Scholar 

  • Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer KJ (2012) 7 - Chitin Metabolism in Insects. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic Press, San Diego, pp 193–235

    Chapter  Google Scholar 

  • Nauen R, Smagghe G (2006) Mode of action of etoxazole. Pest Manag Sci 62(5):379–382

    Article  CAS  PubMed  Google Scholar 

  • Noh MY, Kramer KJ, Muthukrishnan S, Kanost MR, Beeman RW, Arakane Y (2014) Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem Mol Biol 53:22–29

    Article  CAS  PubMed  Google Scholar 

  • Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2015) Tribolium castaneum RR-1 cuticular protein TcCPR4 Is required for formation of pore canals in rigid cuticle. PLoS Genet 11(2):e1004963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y (2018) A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLoS Genet 14(3):e1007307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okay S, Tefon BE, Özkan M, Özcengiz G (2007). Expression of chitinase A (chiA) gene from a local isolate of Serratia marcescens in Coleoptera-specific Bacillus thuringiensis. J Appl Microbiol 104(1):161–170

    Google Scholar 

  • Omura S, Arai N, Yamaguchi Y, Masuma R, Iwai Y, Namikoshi M et al (2000) Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. I. Taxonomy, fermentation, and biological activities. J Antibiot (Tokyo) 53(6):603–608

    Article  CAS  Google Scholar 

  • Osman GH, Assem SK, Alreedy RM, El-Ghareeb DK, Basry MA, Rastogi A et al (2015). Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Sci Rep 5(1):18067

    Google Scholar 

  • Oyeleye A, Normi YM (2018). Chitinase: Diversity, limitations and trends in engineering for suitable applications. Biosci Rep BSR20180323

    Google Scholar 

  • Pesch Y-Y, Riedel D, Patil KR, Loch G, Behr M (2016) Chitinases and imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep 6(1)

    Google Scholar 

  • Petkau G, Wingen C, Jussen LCA, Radtke T, Behr M (2012) Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 287(25):21396–21405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp J, PetÅ‘ K, Nagy J (2012) Pesticide productivity and food security: a review. Agronom Sustain Develop 33(1):243–255

    Article  Google Scholar 

  • Qiao L, Xiong G, R-x Wang, S-z He, Chen J, X-l Tong et al (2014) Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genet 196(4):1103–1115

    CAS  Google Scholar 

  • Quan G, Ladd T, Duan J, Wen F, Doucet D, Cusson M et al (2013) Characterization of a spruce budworm chitin deacetylase gene: Stage- and tissue-specific expression, and inhibition using RNA interference. Insect Biochem Molecul Biol

    Google Scholar 

  • Rao FV, Andersen OA, Vora KA, Demartino JA, van Aalten DM (2005) Methylxanthine drugs are chitinase inhibitors: investigation of inhibition and binding modes. Chem Biol 12(9):973–980

    Article  CAS  PubMed  Google Scholar 

  • Regev A, Keller M, Strizhov N, Sneh B, Prudovsky E, Chet I et al (1996) Synergistic Activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62(10):3581–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roelvink PW, Corsaro BG, Granados RR (1995) Characterization of the Helicoverpa armigera and Pseudaletia unipuncta granulovirus enhancin genes. J Gen Virol 76(11):2693–2705

    Article  CAS  PubMed  Google Scholar 

  • Rohrbough J, Rushton E, Woodruff E, Fergestad T, Vigneswaran K, Broadie K (2007) Presynaptic establishment of the synaptic cleft extracellular matrix is required for post-synaptic differentiation. Genes Dev 21(20):2607–2628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton E, Rohrbough J, Deutsch K, Broadie K (2012) Structure-function analysis of endogenous lectin mind-the-gap in synaptogenesis. Develop Neurobiol 72(8):1161–1179

    Article  CAS  Google Scholar 

  • Saguez J, Vincent C, Giordanengo P (2008) Chitinase inhibitors and chitin mimetics for crop protection. Pest Technol 2(2):81–86

    Google Scholar 

  • Sakuda S, Isogai A, Matsumoto S, Suzuki A (1987) Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. J Antibiot (Tokyo) 40(3):296–300

    Google Scholar 

  • Sakuda S, Isogai A, Matsumoto S, Suzuki A, Koseki K (1986) The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces Sp. Tetrahedron Lett 27(22):2475–2478

    Article  CAS  Google Scholar 

  • Shapiro M, Robertson JL (1992) Enhancement of gypsy moth Lepidoptera Lymantriidae baculovirus activity by optical brighteners. J Econ Entomol 85:1120–1124

    Article  CAS  Google Scholar 

  • Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273(28):17665–17670

    Article  CAS  PubMed  Google Scholar 

  • Shi J-F, Mu L-L, Chen X, Guo W-C, Li G-Q (2016) RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). Int J Biol Sci 12(11):1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiomi K, Arai N, Iwai Y, Turberg A, Kolbl H, Omura S (2000) The structure of argifin, a new chitinase inhibitor, produced by Gliocladium sp. Tetrahedron Lett 41:2141–2143

    Article  CAS  Google Scholar 

  • Song T-Q, Yang M-L, Wang Y-L, Liu Q, Wang H-M, Zhang J et al (2016) Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. Insect Sci 23(4):520–530

    Article  CAS  PubMed  Google Scholar 

  • St. Leger RJ, Cooper RM, Charnley AK (1986) Cuticle-degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. J Inverteb Pathol 47(2):167–177

    Google Scholar 

  • Sun R, Liu C, Zhang H, Wang Q (2015) Benzoylurea chitin synthesis inhibitors. J Agric Food Chem 63(31):6847–6865

    Article  CAS  PubMed  Google Scholar 

  • Tabudravu JN, Eijsink VG, Gooday GW, Jaspars M, Komander D, Legg M et al (2002) Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Bioorg Med Chem 10(4):1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Liang J, Zhan Z, Xiang Z, He N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem Mol Biol 40(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • Tantimavanich S, Pantuwatana S, Bhumiratana A, Panbangred W (1997) Cloning of a chitinase gene into Bacillus thuringiensis subsp. aizawai for enhanced insecticidal activity. J Gen Appl Microbiol 43:341–347

    Article  CAS  PubMed  Google Scholar 

  • Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29(2):87–101

    Article  CAS  PubMed  Google Scholar 

  • Terra WR (2001) The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47(2):47–61

    Article  CAS  PubMed  Google Scholar 

  • Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Gilbert LI, Iatrou K and Gill SS (eds) Comprehensive molecular insect science. Elseviers B.V., Amsterdam: New York. vol. 4, pp 171–224

    Google Scholar 

  • Tetreau G, Cao X, Chen Y-R, Muthukrishnan S, Jiang H, Blissard GW et al (2015a). Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Molecul Biol 62:114–126

    Google Scholar 

  • Tetreau G, Dittmer NT, Cao X, Jasrapuria S, Chen Y-R, Muthukrishnan S et al (2015b). Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem Molecul Biol 62:127–141

    Google Scholar 

  • Tiklova K, Tsarouhas V, Samakovlis C (2013) Control of airway tube diameter and integrity by secreted chitin-binding proteins in Drosophila. PLoS One 8(6):e67415

    Google Scholar 

  • Tsirilakis K, Kim C, Vicencio AG, Andrade C, Casadevall A, Goldman DL (2012) Methylxanthine inhibit fungal chitinases and exhibit antifungal activity. Mycopathologia 173(2–3):83–91

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Demaeght P, Osborne EJ, Dermauw W, Gohlke S, Nauen R et al (2012) Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods. Proc Natl Acad Sci 109(12):4407–4412

    Article  PubMed  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang A (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549–555

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (1997a) An intestinal mucin is the target substrate for a baculovirus enhancin. Proc Natl Acad Sci USA 94(13):6977–6982

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (1997b) Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem 272(26):16663–16669

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (1998) Observations on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting baculovirus infection. J Invertebr Pathol 72(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (2000) Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30:135–143

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Granados RR (2001) Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47(2):110–118

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Hammer DA, Granados RR (1994) Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects. J Gen Virol 75(Pt 8):1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Li GX, Granados RR (2004) Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 34(3):215–227

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ding X, Gopalakrishnan B, Morgan TD, Johnson L, White FF et al (1996) Characterization of a 46 kDa insect chitinase from transgenic tobacco. Insect Biochem Mol Biol 26(10):1055–1064

    Article  CAS  Google Scholar 

  • Willis JH, Iconomidou VA, Smith RF, Hamodrakas SJ (2005) Cuticular proteins. In: Gilbert LI, Iatrou K and Gill SS (eds) Comprehensive molecular insect science. Elseviers B.V., Amsterdam: New York. vol 4, pp 79–109

    Google Scholar 

  • Willis JH, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2012) Cuticular Proteins. In: Gilbert LI (ed) Insect molecular biology and biochemistry. Academic Press, San Diego, pp 134–166

    Chapter  Google Scholar 

  • Wu J-J, Chen Z-C, Wang Y-W, Fu K-Y, Guo W-C, Li G-Q (2018). Silencing chitin deacetylase 2 impairs larval-pupal and pupal-adult molts in Leptinotarsa decemlineata. Insect Molecul Biol 28(1):52–64

    Google Scholar 

  • Xi Y, Pan P-L, Ye Y-X, Yu B, Zhang C-X (2014) Chitin deacetylase family genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Molecul Biol 23(6):695–705

    Google Scholar 

  • Xi Y, Pan PL, Ye YX, Yu B, Xu HJ, Zhang CX (2015) Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology 24(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA et al (2017). Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Scientif Rep 7(1):11091

    Google Scholar 

  • Yang W-J, Xu K-K, Yan X, Chen C-X, Cao Y, Meng Y-L et al (2018) Functional characterization of chitin deacetylase 1 gene disrupting larval–pupal transition in the drugstore beetle using RNA interference. Comp Biochem Physiol B: Biochem Mol Biol 219–220:10–16

    Google Scholar 

  • Zhang D, Chen J, Yao Q, Pan Z, Chen J, Zhang W (2012) Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79(4–5):220–234

    Article  CAS  PubMed  Google Scholar 

  • Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol 61:177–196

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci USA 105(18):6650–6655

    Article  PubMed  Google Scholar 

  • Zimoch L, Hogenkamp DG, Kramer KJ, Muthukrishnan S, Merzendorfer H (2005) Regulation of chitin synthesis in the larval midgut of Manduca sexta. Insect Biochem Mol Biol 35(6):515–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part the USDA AFRI Foundational Program competitive grant no. 2016-67013-24754 and USDA NIFA Hatch Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tetreau, G., Wang, P. (2019). Chitinous Structures as Potential Targets for Insect Pest Control. In: Yang, Q., Fukamizo, T. (eds) Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology, vol 1142. Springer, Singapore. https://doi.org/10.1007/978-981-13-7318-3_13

Download citation

Publish with us

Policies and ethics