Skip to main content

Microbial Hosts as a Promising Platform for Polyphenol Production

  • Chapter
  • First Online:

Abstract

Plants synthesize a variety of different secondary metabolites, such as polyphenols, terpenoids, alkaloids, etc., with pharmaceutical and nutraceutical importance. Polyphenols have shown numerous health benefits with rare side effects. However, the extraction of these compounds from natural sources cannot meet the increasing consumer demand for natural products, and its purification is often difficult, making the overall process too expensive. In contrast, microbial production of polyphenols is a powerful alternative to produce natural products in large amounts, in an environmentally sustainable way. Nevertheless, plant-derived polyphenols are not naturally produced by microorganisms and therefore require the integration of the heterologous pathway from plants through genetic engineering techniques. In the present chapter, the recent advances in microbial production of plant-derived polyphenols, emphasizing on flavonoids, anthocyanins, curcuminoids, and stilbenes, have been summarized. In addition, different strategies used to increase the product yield, and the production processes are also highlighted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afonso MS, Ferreira S, Domingues FC, Silva F (2015) Resveratrol production in bioreactor: assessment of cell physiological states and plasmid segregational stability. Biotechnol Rep 5:7–13

    Article  Google Scholar 

  • Ahmed E, Arshad M, Zakriyya Khan M, Shoaib Amjad M, Mehreen Sadaf H, Riaz I, Sabir S, Ahmad N, Ejaz Ahmed C (2017) Secondary metabolites and their multidimensional prospective in plant life. J Pharmacogn Phytochem 205:205–214

    Google Scholar 

  • Allied Market Research (2017) https://www.alliedmarketresearch.com/polyphenol-market. Accessed 20 May 2018

  • Amalraj A, Pius A, Gopi S, Gopi S (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J Tradit Compl Med 7:205–233

    Article  Google Scholar 

  • Atanasov AG, Waltenberger B, Eva-Maria Pferschy-Wenzig TL, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirscha VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin MB, Bowman ME, Ferrer JL, Schröder J, Noel JP (2004) An aldol switch discovered in stilbene synthases mediates cyclization specificity of type III polyketide synthases. Chem Biol 11:1179–1194

    Article  CAS  PubMed  Google Scholar 

  • Bakowska-Barczak A (2005) Acylated anthocyanins as stable, natural food colorants – a review. Polish J Food Nutr Sci 1455:107–116

    Google Scholar 

  • Becker JVW, Armstrong GO, Van Der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85

    Article  CAS  PubMed  Google Scholar 

  • Beekwilder J, Wolswinkel R, Jonker H, Hall R, De Rie Vos CH, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhan N, Xu P, Khalidi O, Koffas MAG (2013) Redirecting carbon flux into malonyl-CoA to improve resveratrol titers: proof of concept for genetic interventions predicted by OptForce computational framework. Chem Eng Sci 103:109–114

    Article  CAS  Google Scholar 

  • Bicas JL, Maróstica Jr MR, Pastore GM (2016) Biotechnological production of natural ingredients for food industry. Bentham Science Publishers, pp 1–492

    Google Scholar 

  • Braga A, Oliveira J, Silva R, Ferreira P, Rocha I, Kallscheuer N, Marienhagen J, Faria N (2018a) Impact of the cultivation strategy on resveratrol production from glucose in engineered Corynebacterium glutamicum. J Biotechnol 265:70–75

    Article  CAS  PubMed  Google Scholar 

  • Braga A, Silva M, Oliveira J, Silva AR, Ferreira P, Ottens M, Rocha I, Faria N (2018b) An adsorptive bioprocess for production and recovery of resveratrol with Corynebacterium glutamicum. J Chem Technol Biotechnol 93:1661–1668

    Article  CAS  Google Scholar 

  • Camacho-Zaragoza JM, Hernández-Chávez G, Moreno-Avitia F, Ramírez-Iñiguez R, Martínez A, Bolívar F, Gosset G (2016) Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb Cell Fact 15:163. https://doi.org/10.1186/s12934-016-0562-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao J, Li H, Cheng KW, Yu MS, Chang RCC, Wang M (2010) Protective effects of pinostilbene, a resveratrol methylated derivative, against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. J Nutr Biochem 21:482–489

    Article  CAS  PubMed  Google Scholar 

  • Chityala S, Nandana V (2017) Biotechnology of commercial microbial products. In: Singh D, Singh HPR (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore

    Google Scholar 

  • Choi O, Wu CZ, Kang SY, Ahn JS, Uhm TB, Hong YS (2011) Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Indian Microbiol Biotechnol 38:1657–1665

    Article  CAS  Google Scholar 

  • Choi SH, Ryu M, Yoon YJ, Kim DM, Lee EY (2012) Glycosylation of various flavonoids by recombinant oleandomycin glycosyltransferase from Streptomyces antibioticus in batch and repeated batch modes. Biotechnol Lett 34:499–505

    Article  CAS  PubMed  Google Scholar 

  • Choi O, Lee JK, Kang SY, Pandey RP, Sohng JK, Ahn JS, Hong YS (2014) Construction of artificial biosynthetic pathways for resveratrol glucoside derivatives. J Microbiol Biotechnol 24:614–618

    Article  CAS  PubMed  Google Scholar 

  • Chouhan S, Sharma K, Zha J, Guleria S, Koffas MAG (2017) Recent advances in the recombinant biosynthesis of polyphenols. Front Microbiol 8:1–16

    Article  Google Scholar 

  • Couto MR, Rodrigues JL, Rodrigues LR (2017) Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli. J Royal Soc Interface 14:20170470. https://doi.org/10.1098/rsif.2017.0470

    Article  CAS  Google Scholar 

  • Cress BF, Leitz QD, Kim DC, Amore TD, Suzuki JY, Linhardt RJ, Koffas MAG (2017) CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb Cell Fact 16:1–14. https://doi.org/10.1186/s12934-016-0623-3

    Article  CAS  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  CAS  PubMed  Google Scholar 

  • De Filippis B, Ammazzalorso A, Fantacuzzi M, Giampietro L, Maccallini C, Amoroso R (2017) Anticancer activity of stilbene-based derivatives. Chem Med Chem 12:558–570

    Article  CAS  PubMed  Google Scholar 

  • de Fouchécour F, Sánchez-Castañeda A-K, Saulou-Bérion C, Spinnler HÉ (2018) Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnol Adv 36:1207–1222

    Article  CAS  PubMed  Google Scholar 

  • Delmulle T, de Maeseneire SL, de Mey M (2018) Challenges in the microbial production of flavonoids. Phytochem Rev 17:229–247

    Article  CAS  Google Scholar 

  • Donnez D, Jeandet P, Clément C, Courot E (2009) Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol 27:706–713

    Article  CAS  PubMed  Google Scholar 

  • Du J, Shao Z, Zhao H (2013) Engineering microbial factories for synthesis of value-added products. J Indian Microbiol Biotechnol 38:873–890

    Article  CAS  Google Scholar 

  • Duan L, Ding W, Liu X, Cheng X, Cai J, Hua E, Jiang H (2017) Biosynthesis and engineering of kaempferol in Saccharomyces cerevisiae. Microb Cell Fact 16:1–10. https://doi.org/10.1186/s12934-017-0774-x

    Article  CAS  Google Scholar 

  • Dudnik A, Almeida AF, Andrade R, Avila B, Bañados P, Barbay D, Bassard JE, Benkoulouche M, Bott M, Braga A, Breitel D, Brennan R, Bulteau L, Chanforan C, Costa I, Costa RS, Doostmohammadi M, Faria N, Feng C, Fernandes A, Ferreira P, Ferro R, Foito A, Freitag S, Garcia G, Gaspar P, Godinho-Pereira J, Hamberger B, Hartmann A, Heider H, Jardim C, Julien-Laferriere A, Kallscheuer N, Kerbe W, Kuipers OP, Li S, Love N, Marchetti-Spaccamela A, Marienhagen J, Martin C, Mary A, Mazurek V, Meinhart C, Sevillano DM, Menezes R, Naesby M, Nørholm MHH, Okkels FT, Oliveira J, Ottens M, Parrot D, Pei L, Rocha I, Rosado-Ramos R, Rousseau C, Sagot MF, Dos Santos CN, Schmidt M, Shelenga T, Shepherd L, Silva AR, da Silva MH, Simon O, Stahlhut SG, Solopova A, Sorokin A, Stewart D, Stougie L, Su S, Thole V, Tikhonova O, Trick M, Vain P, Veríssimo A, Vila-Santa A, Vinga S, Vogt M, Wang L, Wang L, Wei W, Youssef S, Neves AR, Forster J (2018) BacHBerry: BACterial hosts for production of bioactive phenolics from bERRY fruits. Phytochem Rev 17:291–326

    Article  CAS  Google Scholar 

  • Eichenberger M, Hansson A, Fischer D, Dürr L, Naesby M (2018) De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae. FEMS Yeast Res 18:foy046. https://doi.org/10.1093/femsyr/foy046

    Article  CAS  Google Scholar 

  • Fabris S, Momo F, Ravagnan G, Stevanato R (2008) Antioxidant properties of resveratrol and piceid on lipid peroxidation in micelles and monolamellar liposomes. Biophys Chem 135:76–83

    Article  CAS  PubMed  Google Scholar 

  • Fang Z, Jones JA, Zhou J, Koffas MAG (2017) Engineering Escherichia coli co-cultures for production of curcuminoids from glucose. Biotechnol J 13:e1700576. https://doi.org/10.1002/biot.201700576

    Article  CAS  PubMed  Google Scholar 

  • Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S (2010) Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discov Today 15:757–765

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Kino K (2014) Regioselective synthesis of piceatannol from resveratrol: catalysis by two-component flavin-dependent monooxygenase HpaBC in whole cells. Tetrahedron Lett 55:2853–2855

    Article  CAS  Google Scholar 

  • Gaspar P, Dudnik A, Neves AR, Föster J (2016) Engineering Lactococcus lactis for stilbene production. In: Abstract from 28th International Conference on Polyphenols 2016. Vienna, Austria

    Google Scholar 

  • Grand View Research 2016 (2016) Grand view research. https://www.grandview research.com/press-release/global-polyphenols-market. Accessed 18 May 2018

  • Harborne JB, Mabry TJ (2013) The flavonoids: advances in research. Springer Science, Business Media LLC, New York/Philadelphia

    Google Scholar 

  • He F, Mu L, Yan GL, Liang NN, Pan QH, Wang J, Reeves MJ, Duan CQ (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo KT, Kang SY, Hong YS (2017) De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis. Microb Cell Fact 16:30. https://doi.org/10.1186/s12934-017-0644-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewlings S, Kalman D (2017) Curcumin: a review of its effects on human health. Foods 6:92. https://doi.org/10.3390/foods6100092

    Article  CAS  PubMed Central  Google Scholar 

  • Huang LL, Xue Z, Zhu QQ (2006) Method for the production of resveratrol in a recombinant oleaginous microorganism. US Patent No. 11/436160

    Google Scholar 

  • Huang Q, Lin Y, Yan Y (2013) Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110:3188–3196

    Article  CAS  PubMed  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang EI, Hwang EI, Ohnishi Y, Ohnishi Y, Horinouchi S, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Förster J, Maury J, Borodina I, Nielsen AT (2015) Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81:4458–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong YJ, An CH, Woo SG, Jeong HJ, Kim YM, Park SJ, Yoon BD, Kim CY (2014) Production of pinostilbene compounds by the expression of resveratrol O-methyltransferase genes in Escherichia coli. Enzyme Microb Technol 54:8–14

    Article  CAS  PubMed  Google Scholar 

  • Jeong YJ, Woo SG, An CH, Jeong HJ, Hong YS, Kim Y-M, Ryu YB, Rho MC, Lee WS, Kim CY (2015) Metabolic engineering for resveratrol derivative biosynthesis in Escherichia coli. Mol Cells 38:318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joe EJ, Kim BG, An BC, Chong Y, Ahn JH (2010) Engineering of flavonoid O-methyltransferase for a novel regioselectivity. Mol Cells 30:137–141

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MHA, Lachance DM, Hahn J, Koffas MAG (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55–63

    Article  CAS  PubMed  Google Scholar 

  • Jones JA, Vernacchio VR, Collins SM, Shirke AN, Xiu Y, Englaender JA, Cress BF, McCutcheon CC, Linhardt RJ, Gross RA, Koffas MAG (2017) Complete biosynthesis of anthocyanins using E. coli polycultures. mBio 8:e00621-17. https://doi.org/10.1128/mBio.00621-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Jovanov A, Petrov P, Ðorðev V, Zdun CG, Šavikin K, Bugarski B (2017) Polyphenols extraction from plant sources. Lek Sirovine 37:45–49

    Article  Google Scholar 

  • Kallam K, Appelhagen I, Luo J, Albert N, Zhang H, Deroles S, Hill L, Findlay K, Andersen ØM, Davies K, Martin C (2017) Aromatic decoration determines the formation of anthocyanic vacuolar inclusions. Curr Biol 27:945–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallscheuer N, Vogt M, Kappelmann J, Krumbach K, Noack S, Bott M, Marienhagen J (2016a) Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum. Appl Microbiol Biotechnol 100:1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J (2016b) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55

    Article  CAS  PubMed  Google Scholar 

  • Kallscheuer N, Vogt M, Bott M, Marienhagen J (2017) Functional expression of plant-derived O-methyltransferase, flavanone 3-hydroxylase, and flavonol synthase in Corynebacterium glutamicum for production of pterostilbene, kaempferol, and quercetin. J Biotechnol 258:190–196

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Lee JK, Choi O, Kim CY, Jang J, Hwang BY, Hong YS (2014) Biosynthesis of methylated resveratrol analogs through the construction of an artificial biosynthetic pathway in E. coli. BMC Biotechnol 14:67. https://doi.org/10.1186/1472-6750-14-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuyama Y, Funa N, Horinouchi S (2007a) Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J 2:1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Funa N, Miyahisa I, Horinouchi S (2007b) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem Biol 14:613–621

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Matsuzawa M, Funa N, Horinouchi S (2008) Production of curcuminoids by Escherichia coli carrying an artificial biosynthesis pathway. Microbiology 154:2620–2628

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Hirose Y, Funa N, Onhnishi Y, Horinouchi S (2010) Precursor-directed biosynthesis of curcumin analogs in Escherichia coli. Biosci Biotechnol Biochem 74:641–645

    Article  CAS  PubMed  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Chang EJ, Cho SH, Chung SK, Park HD, Choi SW (2002) Antioxidative activity of resveratrol and its derivatives isolated from seeds of Paeonia lactiflora. Biosci Biotechnol Biochem 66:1990–1993

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim BG, Jung NR, Ahn JH (2009) Production of genistein from naringenin using Escherichia coli containing isoflavone synthase-cytochrome P450 reductase fusion protein. J Microbiol Biotechnol 19:1612–1616

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Joe EJ, Ahn JH (2010) Molecular characterization of flavonol synthase from poplar and its application to the synthesis of 3-O-methylkaempferol. Biotechnol Lett 32:579–584

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim BG, Ahn JH (2013a) Regioselective synthesis of flavonoid bisglycosides using Escherichia coli harboring two glycosyltransferases. Appl Microbiol Biotechnol 97:5275–5282

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim BG, Ahn JH (2013b) Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 97:7195–7204

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Cha MN, Kim BG, Ahn JH (2017) Production of curcuminoids in engineered escherichia coli. J Microbiol Biotechnol 27:975–982

    Article  CAS  PubMed  Google Scholar 

  • Kiselev KV (2011) Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90:417–425

    Article  CAS  PubMed  Google Scholar 

  • Koirala N, Thuan NH, Ghimire GP, Van Thang D, Sohng JK (2016) Methylation of flavonoids: chemical structures, bioactivities, progress and perspectives for biotechnological production. Enzyme Microb Technol 86:103–116

    Article  CAS  PubMed  Google Scholar 

  • Koopman F, Beekwilder J, Crimi B, Van Houwelingen A, Hall RD, Bosch D, Van Maris AJA, Pronk JT, Daran JM (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact 11:155. https://doi.org/10.1186/1475-2859-11-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee N, Kim EJ, Kim BG (2012) Regioselective hydroxylation of trans -resveratrol via inhibition of tyrosinase from streptomyces avermitilis MA4680. ACS Chem Biol 7:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim BG, Ahn JH (2014) Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis. J Biotechnol 176:11–17

    Article  CAS  PubMed  Google Scholar 

  • Leonard E, Koffas MAG (2007) Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl Environ Microbiol 73:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard E, Yan Y, Lim KH, Koffas M (2005) Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8241–8248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard E, Chemler J, Hong K (2006) Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Appl Environ Microbiol 70:85–91

    CAS  Google Scholar 

  • Leonard E, Lim K, Saw P, Koffas MAG (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MAG (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li Z, Li C, Gou J, Zhang Y (2014) Molecular cloning and characterization of an isoflavone 7-O-glucosyltransferase from Pueraria lobata. Plant Cell Rep 33:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11. https://doi.org/10.1016/j.ymben.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  • Li M, Schneider K, Kristensen M, Borodina I, Nielsen J (2016) Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep 6:1–8. https://doi.org/10.1038/srep36827

    Article  CAS  Google Scholar 

  • Liang JL, Guo LQ, Lin JF, He ZQ, Cai FJ, Chen JF (2016) A novel process for obtaining pinosylvin using combinatorial bioengineering in Escherichia coli. World J Microbiol Biotechnol 32:102. https://doi.org/10.1007/s11274-016-2062-z

    Article  CAS  PubMed  Google Scholar 

  • Light SH, Halavaty AS, Minasov G, Shuvalova L, Anderson WF (2012) Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain. Protein Sci 21:887–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MAG (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CG, Wong L, Bhan N, Dvora H, Xu P, Venkiteswaran S, Koffas MAG (2015) Development of a recombinant Escherichia coli strain for overproduction of the plant pigment anthocyanin. Appl Environ Microbiol 81:6276–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21:E1374. https://doi.org/10.3390/molecules21101374

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Lin J, Hu H, Zhou B, Zhu B (2016) De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli. FEMS Microbiol Lett 363:1–5. https://doi.org/10.1093/femsle/fnw061

    Article  CAS  Google Scholar 

  • Lyu X, Ng KR, Lee JL, Mark R, Chen WN (2017) Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of Saccharomyces cerevisiae. J Agric Food Chem 65:6638–6646

    Article  CAS  PubMed  Google Scholar 

  • MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  CAS  PubMed  Google Scholar 

  • Malla S, Koffas MAG, Kazlauskas RJ, Kim BG (2012) Production of 7-O-Methyl aromadendrin, a medicinally valuable flavonoid, in Escherichia coli. Appl Environ Microbiol 78:684–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malla S, Pandey RP, Kim BG, Sohng JK (2013) Regiospecific modifications of naringenin for astragalin production in Escherichia coli. Biotechnol Bioeng 110:2525–2535

    Article  CAS  PubMed  Google Scholar 

  • Mei YZ, Liu RX, Wang DP, Wang X, Dai CC (2015) Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37:9–18

    Article  CAS  PubMed  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N (2018) Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol 102:1575–1585

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Yun CS, Matsuda F, Sasaki T, Saito K, Tozawa Y (2010) Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta 232:209–218

    Article  CAS  PubMed  Google Scholar 

  • Ogata K, Uchiyama K, Yamada H (1967) Metabolism of aromatic amino acid in microorganisms: part 1. Formation of cinnamic acid from phenylalanine. Agric Biol Chem 31:200–206

    CAS  Google Scholar 

  • Ozaki S, Imai H, Iwakiri T, Sato T, Shimoda K, Nakayama T, Hamada H (2012) Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana. Biotechnol Lett 34:475–481

    Article  CAS  PubMed  Google Scholar 

  • Palve Y, Nayak P (2012) Curcumin: a wonder anticancer drug. Int J Pharm Biomed Sci 3:60–69

    Google Scholar 

  • Pandey RP, Parajuli P, Koirala N, Lee JH, Park Y II, Sohng JK (2014) Glucosylation of isoflavonoids in engineered Escherichia coli. Mol Cells 37:172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey RP, Parajuli P, Koffas MAG, Sohng JK (2015) Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 34:634–662

    Article  CAS  Google Scholar 

  • Park SR, Yoon JA, Paik JH, Park JW, Jung WS, Ban YH, Kim EJ, Yoo YJ, Han AR, Yoon YJ (2009) Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J Biotechnol 141:181–188

    Article  CAS  PubMed  Google Scholar 

  • Passeri V, Koes R, Quattrocchio FM (2016) New challenges for the design of high value plant products: stabilization of Anthocyanins in plant vacuoles. Front Plant Sci 7:1–9. https://doi.org/10.3389/fpls.2016.00153

    Article  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chemie-Int Ed 50:586–621

    Article  CAS  Google Scholar 

  • Ralston L, Subramanian S, Matsuno M, Yu O (2005) Partial reconstruction of flavonoid and isoflavonoid biosynthesis in yeast using soybean type I and type II chalcone isomerases. Plant Physiol 137:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinisalo M, Kårlund A, Koskela A, Kaarniranta K, Karjalainen RO (2015) Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid Med Cell Longev 2015:340520. https://doi.org/10.1155/2015/340520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rimando AM, Cuendet M, Desmarchelier C, Mehta RG, Pezzuto JM, Duke SO (2002) Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agric Food Chem 50:3453–3457

    Article  CAS  PubMed  Google Scholar 

  • Ro D, Douglas CJ (2004) Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae). J Biol Chem 279:2600–2607

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR (2015a) Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol J 10:599–609

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Prather KLJ, Kluskens LD, Rodrigues LR (2015b) Heterologous Production of Curcuminoids. Microbiol Mol Biol Rev 79:39–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F (2014) Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact 13:1–15. https://doi.org/10.1186/s12934-014-0126-z

    Article  CAS  Google Scholar 

  • Rodriguez A, Strucko T, Stahlhut SG, Kristensen M, Svenssen DK, Forster J, Nielsen J, Borodina I (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Ruby S, Kumar RJ, Vishwakarma RK, Singh S, Khan BM (2014) Molecular cloning and characterization of genistein 4′-O-glucoside specific glycosyltransferase from Bacopa monniera. Mol Biol Rep 41:4675–4688

    Article  CAS  PubMed  Google Scholar 

  • Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  • Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400

    Article  CAS  PubMed  Google Scholar 

  • Santos CNS, Xiao W, Stephanopoulos G (2012) Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. Proc Natl Acad Sci USA 109:13538–13543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenck CA, Maeda HA (2018) Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry 149:82–102

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kulkarni SK, Chopra K (2007) Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol 21:89–94

    Article  CAS  PubMed  Google Scholar 

  • Shashank K, Pandey AK (2013) Chemistry and biological activities of flavonoids. Sci World J 2013:533–548

    Google Scholar 

  • Shin SK, Ha TY, McGregor RA, Choi MS (2011a) Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res 55:1829–1840

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Han NS, Park YC, Kim MD, Seo JH (2011b) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate: Coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol 48:48–53

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Jung SM, Kim MD, Han NS, Seo JH (2012) Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme Microb Technol 51:211–216

    Article  CAS  PubMed  Google Scholar 

  • Si HY, Li DP, Wang TM, Zhang HL, Ren FY, Xu ZG, Zhao YY (2010) Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system. J Nanosci Nanotechnol 10:2325–2331

    Article  CAS  PubMed  Google Scholar 

  • Sood S, Nagpal M (2013) Role of curcumin in systemic and oral health: an overview. J Nat Sci Biol Med 4:3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahlhut SG, Siedler S, Malla S, Harrison SJ, Maury J, Neves AR, Forster J (2015) Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab Eng 31:84–93

    Article  CAS  PubMed  Google Scholar 

  • Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76:3361–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sytar Oksana, Marian B, Mahendra R, Bo SH (2012) Plant phenolic compounds for food, pharmaceutical and cosmetiсs production. J Med Plants Res 6:2526–2539

    Article  CAS  Google Scholar 

  • Thuan NH, Trung NT, Cuong NX, Van Cuong D, Van Quyen D, Malla S (2018a) Escherichia coli modular coculture system for resveratrol glucosides production. World J Microbiol Biotechnol 34:75. https://doi.org/10.1007/s11274-018-2458-z

    Article  CAS  PubMed  Google Scholar 

  • Thuan NH, Chaudhary AK, Van Cuong D, Cuong NX (2018b) Engineering co-culture system for production of apigetrin in Escherichia coli. J Ind Microbiol Biotechnol 45:175–185

    Article  CAS  PubMed  Google Scholar 

  • Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366

    Article  CAS  PubMed  Google Scholar 

  • Trantas EA, Koffas MAG, Xu P, Ververidis F (2015) When plants produce not enough or at all: metabolic engineering of flavonoids in microbial hosts. Front Plant Sci 6:7. https://doi.org/10.3389/fpls.2015.00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157

    Article  CAS  Google Scholar 

  • Tropf S, Lanz T, Rensing SA, Schröder J, Schröder G (1994) Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution. J Mol Evol 38:610–618

    Article  CAS  PubMed  Google Scholar 

  • Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda T (2012) Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 56:159–170

    Article  CAS  PubMed  Google Scholar 

  • Turnbull JJ, Nakajima JI, Welford RWD, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J Biol Chem 279:1206–1216

    Article  CAS  PubMed  Google Scholar 

  • van Summeren-Wesenhagen PV, Marienhagen J (2013) Putting bugs to the blush: metabolic engineering for phenylpropanoid-derived products in microorganisms. Bioeng 4:355–362

    Google Scholar 

  • van Summeren-Wesenhagen PV, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl Environ Microbiol 81:840–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas-Tah A, Gosset G (2015) Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Front Bioeng Biotechnol 3:1–10. https://doi.org/10.3389/fbioe.2015.00116

    Article  Google Scholar 

  • Wallace TC, Monica GM (2013) Anthocyanins in health and disease. Taylor C. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wang Y, Yu O (2012) Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. J Biotechnol 157:258–260

    Article  CAS  PubMed  Google Scholar 

  • Wang BF, Wang JS, Lu JF, Kao TH, Chen BH (2009) Antiproliferation effect and mechanism of prostate cancer cell lines as affected by isoflavones from soybean cake. J Agric Food Chem 57:2221–2232

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen S, Yu O (2011a) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91:949–956

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011b) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Zhou T, Zeng J, Zhan J (2013) Design and application of an in vivo reporter assay for phenylalanine ammonia-lyase. Appl Microbiol Biotechnol 97:7877–7885

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang S, Xiao A, Rasmussen M, Skidmore C, Zhan J (2015a) Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng 29:153–159

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bhuiya MW, Zhou R, Yu O (2015b) Pterostilbene production by microorganisms expressing resveratrol O-methyltransferase. Ann Microbiol 65:817–826

    Article  CAS  Google Scholar 

  • Watts KT, Lee PC, Schmidt-dannert C (2004) Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. Chembiochem 55108:500–507

    Article  CAS  Google Scholar 

  • Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:1–12. https://doi.org/10.1186/1472-6750-6-22

    Article  CAS  Google Scholar 

  • Wu J, Du G, Zhou J, Chen J (2013a) Metabolic engineering of Escherichia coli for (2 S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu P, Fan Y, Bao H, Du G, Zhou J, Chen J (2013b) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. J Biotechnol 167:404–411

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du G, Zhou J, Chen J (2014) Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds. J Biotechnol 188:72–80

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang X, Zhou J, Dong M (2016) Efficient biosynthesis of (2S)-pinocembrin from D-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Bioresour Technol 218:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang X, Zhu Y, Tan Q, He J, Dong M (2017a) Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-01700-9

    Article  CAS  Google Scholar 

  • Wu J, Zhou P, Zhang X, Dong M (2017b) Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 44:1083–1095. https://doi.org/10.1007/s10295-017-1937-9

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Eiteman MA (2017) Quercetin glucoside production by engineered Escherichia coli. Appl Biochem Biotechnol 182:1358–1370

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MAG (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y (2012) Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep 39:2285–2296

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Chemler J, Huang L, Martens S, Koffas MAG (2005a) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71:3617–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Kohli A, Koffas MAG (2005b) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Huang L, Koffas MAG (2007) Biosynthesis of 5-deoxyflavanones in microorganisms. Biotechnol J 2:1250–1262

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Li Z, Koffas MAG (2008) High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 100:126–140

    Article  CAS  PubMed  Google Scholar 

  • Yang SM, Han SH, Kim BG, Ahn JH (2014) Production of kaempferol 3-O-rhamnoside from glucose using engineered Escherichia coli. J Ind Microbiol Biotechnol 41:1311–1318

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26:1466. https://doi.org/10.1039/b817077k

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-A, Kim B-G, Lee WJ, Lim Y, Chong Y, Ahn J-H (2012) Production of a novel Quercetin glycoside through metabolic engineering of Escherichia coli. Appl Environ Microbiol 78:4256–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zha J, Koffas MAG (2017a) Anthocyanin production in engineered microorganisms. In: Schwab W, Lange B, Wüst M (eds) Biotechnology of natural products. Springer, Cham, pp 81–97

    Google Scholar 

  • Zha J, Koffas MAG (2017b) Production of anthocyanins in metabolically engineered microorganisms: current status and perspectives. Synth Syst Biotechnol 2:259–266

    Article  PubMed  PubMed Central  Google Scholar 

  • Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Stephanopoulos G (2013) Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol 97:3333–3341

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, Jaworski JG, Wang X, Jez JM, Chen F, Yu O (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Matsuda H, Yamashita C, Nakamura S, Yoshikawa M (2009) Hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii as a new type of anti-diabetic compound. Eur J Pharmacol 606:255–261

    Article  CAS  PubMed  Google Scholar 

  • Zhang E, Guo X, Meng Z, Wang J, Sun J, Yao X, Xun H (2015) Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL::RS in Escherichia coli. World J Microbiol Biotechnol 31:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu H, Li X, Liu D, Dong XT, Li FF, Wang EX, Li BZ, Yuan YJ (2017) Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng Life Sci 17:1021–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Jones JA, Lachance DM, Bhan N, Khalidi O, Venkataraman S, Wang Z, Koffas MAG (2015) Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng 28:43–53

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wu J, Du G, Zhou J, Chen J (2014) Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Appl Environ Microbiol 80:3072–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the European Union Framework Program 7 “BacHBerry” (www.bachberry.eu), Project No. FP7- 613793 for financial support, the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684), and BiotecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020–Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Braga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braga, A., Rocha, I., Faria, N. (2019). Microbial Hosts as a Promising Platform for Polyphenol Production. In: Akhtar, M., Swamy, M., Sinniah, U. (eds) Natural Bio-active Compounds. Springer, Singapore. https://doi.org/10.1007/978-981-13-7154-7_3

Download citation

Publish with us

Policies and ethics