Skip to main content

Biomaterials and Its Medical Applications

  • Chapter
  • First Online:

Abstract

The human body undergoes wear and tear with age, and it is subjected to various diseases and disorders throughout the lifespan. Sometimes, administration of medical agents does not suffice for complete recovery from the ailments. External agents or materials are required to support the normal functioning of the body. The materials that are engineered to interact with biological systems for the purpose of diagnosis or treatment of diseases and ailments are known as biomaterials. Any resource to be engineered and used as a biomaterial must possess the qualities of biocompatibility, inertness, mechanical stability, and ease of fabrication. The site and application of the biomaterial may demand specific properties. Biomaterials for dental and orthopedic applications should possess substantial mechanical strength and prolonged rates of biodegradation, while those for visceral organ and dermal applications must be flexible with faster rates of degradation. Biomaterials may be of natural or synthetic origin. The chapter discusses various applications of biomaterials in the medical and pharmaceutical industry. It highlights the types of biomaterials and discusses their properties specific to each application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3D:

three-dimensional

Al2O3:

aluminum oxide

ALCL:

anaplastic large cell lymphoma

BMS:

bare-metal stents

CaP:

calcium phosphate

CB:

cardiovascular biomaterials

DES:

drug-eluting stent

ECM:

extracellular matrix

e-PTFE:

elongated-PTFE

IL:

interleukin

IOLs:

intraocular lenses

HA:

hydroxyapatite

NSS:

nitrogenated stainless steel

PE:

polyethylene

PEG:

polyethylene glycol

PET:

polyethylene terephthalate

PGA:

polyglycolic acid

PLA:

polylactic acid

PLGA:

poly (DL-lactide-co-glycolide)

PLGA-Fn:

PLGA immersed in fibronectin

PLLA:

poly-L-lactic acids

PLLA-Fn:

PLLA immersed in fibronectin

P (LL-co-CL):

poly-D,L-lactide-co-epsilon-caprolactone

PMMA:

polymethyl methacrylate

PP:

polypropylene

PTFE:

polytetrafluoroethylene

PVDF:

polyvinylidene fluoride

T/L:

tendons and ligaments

TJR:

total joint replacement

TNF:

tumor necrosis factor

ZrO2:

zirconia

References

  1. Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 9(1)

    Article  Google Scholar 

  2. Wong CS, Schaffner AD (2018) Breast, implants. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  3. Kang SH, Sutthiwanjampa C, Heo CY, Kim WS, Lee SH, Park H (2018) Current approaches including novel nano/microtechniques to reduce silicone implant-induced contracture with adverse immune responses. Int J Mol Sci 19(4)

    Article  Google Scholar 

  4. Jaganathan SK, Supriyanto E, Murugesan S, Balaji A, Asokan MK (2014) Biomaterials in cardiovascular research: applications and clinical implications. Biomed Res Int 2014:459465

    PubMed  PubMed Central  Google Scholar 

  5. Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107–120

    Article  CAS  Google Scholar 

  6. Kostrzewa B, Rybak Z (2013) History, present and future of biomaterials used for artificial heart valves. Polim Med 43(3):183–189

    PubMed  Google Scholar 

  7. Zeng FG, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142

    Article  Google Scholar 

  8. Harnack D, Winter C, Meissner W, Reum T, Kupsch A, Morgenstern R (2004) The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats. J Neurosci Methods 138(1-2):207–216

    Article  Google Scholar 

  9. Mendes GC, Brandao TR, Silva CL (2007) Ethylene oxide sterilization of medical devices: a review. Am J Infect Control 35(9):574–581

    Article  Google Scholar 

  10. Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39(4):424–426

    Article  CAS  Google Scholar 

  11. Ananth H, Kundapur V, Mohammed HS, Anand M, Amarnath GS, Mankar S (2015) A review on biomaterials in dental implantology. Int J Biomed Sci 11(3):113–120

    PubMed  PubMed Central  Google Scholar 

  12. Bhagwat R, Vaidhya IS (2013) Novel drug delivery systems: an overview. Int J Pharm Sci Res 4(3):970–982

    CAS  Google Scholar 

  13. Kuo CK, Marturano JE, Tuan RS (2010) Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol 2:20

    PubMed  PubMed Central  Google Scholar 

  14. Cooper JA, Lu HH, Ko FK, Freeman JW, Laurencin CT (2005) Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials 26(13):1523–1532

    Article  CAS  Google Scholar 

  15. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL (2002) Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124(2):214–222

    Article  Google Scholar 

  16. Greenwald D, Shumway S, Albear P, Gottlieb L (1994) Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res 56(4):372–377

    Article  CAS  Google Scholar 

  17. Havelin LI, Espehaug B, Vollset SE, Engesaeter LB (1995) The effect of the type of cement on early revision of Charnley total hip prostheses. A review of eight thousand five hundred and seventy-nine primary arthroplasties from the Norwegian Arthroplasty Register. J Bone Joint Surg Am 77(10):1543–1550

    Article  CAS  Google Scholar 

  18. Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials (Basel, Switzerland) 10:4

    Google Scholar 

  19. Joint Replacement Surgery and You. In Arthritis MaSDo. April 2009. http://www.niams.nih.gov/#

  20. Gibon E, Cordova LA, Lu L, Lin TH, Yao Z, Hamadouche M et al (2017b) The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater 105(6):1685–1691

    Article  CAS  Google Scholar 

  21. Gibon E, Amanatullah DF, Loi F, Pajarinen J, Nabeshima A, Yao Z et al (2017a) The biological response to orthopaedic implants for joint replacement: Part I: Metals. J Biomed Mater Res B Appl Biomater 105(7):2162–2173

    Article  CAS  Google Scholar 

  22. Kim JA, Ihn HJ, Park JY, Lim J, Hong JM, Kim SH et al (2015) Inhibitory effects of triptolide on titanium particle-induced osteolysis and receptor activator of nuclear factor-kappaB ligand-mediated osteoclast differentiation. Int Orthop 39(1):173–182

    Article  Google Scholar 

  23. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36

    Article  Google Scholar 

  24. Gaudin R, Knipfer C, Henningsen A, Smeets R, Heiland M, Hadlock T (2016) Approaches to peripheral nerve repair: generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. Biomed Res Int 2016:3856262

    Article  Google Scholar 

  25. Konofaos P, Ver Halen JP (2013) Nerve repair by means of tubulization: past, present, future. J Reconstr Microsurg 29(3):149–164

    Article  CAS  Google Scholar 

  26. Bozkurt A, Lassner F, O’Dey D, Deumens R, Bocker A, Schwendt T et al (2012) The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials 33(5):1363–1375

    Article  CAS  Google Scholar 

  27. Zhang BG, Quigley AF, Myers DE, Wallace GG, Kapsa RM, Choong PF (2014) Recent advances in nerve tissue engineering. Int J Artif Organs 37(4):277–291

    Article  Google Scholar 

  28. Nguyen J, Werner L (1995) Intraocular lenses for cataract surgery. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City (UT). Copyright: (c) 2018 Webvision

    Google Scholar 

  29. Werner L (2008) Biocompatibility of intraocular lens materials. Curr Opin Ophthalmol 19(1):41–49

    Article  Google Scholar 

  30. Maddula S, Werner L, Ness PJ, Davis D, Zaugg B, Stringham J et al (2011) Pathology of 157 human cadaver eyes with round-edged or modern square-edged silicone intraocular lenses: analyses of capsule bag opacification. J Cataract Refract Surg 37(4):740–748

    Article  Google Scholar 

  31. Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S et al (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18(4)

    Article  Google Scholar 

  32. Gierek M, Kusnierz K, Lampe P, Ochala G, Kurek J, Hekner B et al (2018) Absorbable sutures in general surgery – review, available materials, and optimum choices. Polski Przeglad Chirurgiczny 90(2):34–37

    Article  Google Scholar 

  33. Todros S, Pavan PG, Natali AN (2015) Biomechanical properties of synthetic surgical meshes for pelvic prolapse repair. J Mech Behav Biomed Mater 55:271–285

    Article  CAS  Google Scholar 

  34. Ding J, Deng M, Song XC, Chen C, Lai KL, Wang GS et al (2016) Nanofibrous biomimetic mesh can be used for pelvic reconstructive surgery: a randomized study. J Mech Behav Biomed Mater 61:26–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dharadhar, S., Majumdar, A. (2019). Biomaterials and Its Medical Applications. In: Paul, S. (eds) Application of Biomedical Engineering in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-13-7142-4_18

Download citation

Publish with us

Policies and ethics