Skip to main content

Plant Growth and Health Promoting Plant-Microbe Interactions

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

The interaction of microbes with plants at the molecular biology and molecular genetics level describes a big concern for a broad range of scientific studies. These interactions can be of various types including pathogenic, symbiotic, and associative, all of which have an impact on plant productivity, disease resistance, and stress tolerance. Such plant-microbe interactions determine the plant fitness and soil health. The important functions for the growth of plants are fulfilled by the microorganisms associated with them. Plant fitness depends on the availability of beneficial microbiome and available nutrient status. There are various mechanisms which are either directly or indirectly implicated in the suppression of soilborne pathogens leading to ameliorated plant health. Microorganisms live as complex populations in the soil and not in the form of pure culture. More than one type of organisms is present in every soil particle. Therefore, the sum of abiotic and biotic components of soil comprise the microbial ecosystem of soil. Most of these organisms are dependent upon one another for direct and indirect nutrients. Some organisms are in competition with one another for energy sources and the elements and components used as nutrients. Hence, numerous associations are formed among soil microorganisms. The nature of microbiome is determined by the biological equilibrium which is a result of interaction among the microbial community. The individual microbes may develop various kinds of interactions such as neutral or beneficial or detrimental.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arroyave, C., Tolrà, R., Chaves, L., de Souza, M. C., Barceló, J., & Poschenrieder, C. (2018). A proteomic approach to the mechanisms underlying activation of aluminium resistance in roots of Urochloa decumbens. Journal of Inorganic Biochemistry, 181, 145–151.

    Article  CAS  Google Scholar 

  • Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666–681.

    Article  CAS  Google Scholar 

  • Badri, D. V., Loyola-Vargas, V. M., Broeckling, C. D., De-la-Peña, C., Jasinski, M., Santelia, D., Martinoia, E., Sumner, L., Banta, L. M., Stermitz, F., & Vivanco, J. M. (2008). Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiology, 146(2), 762–771. https://doi.org/10.1104/pp.107.109587. PMID:18065561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q., & Vivanco, J. M. (2013a). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. The Journal of Biological Chemistry, 288(7), 4502–4512.

    Article  CAS  Google Scholar 

  • Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013b). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. The New Phytologist, 198(1), 264–273.

    Article  CAS  Google Scholar 

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57(1), 233–266.

    Article  CAS  Google Scholar 

  • Bardgett, R. D. (2018). Linking aboveground–belowground ecology: A short historical perspective. In Aboveground–belowground community ecology (pp. 1–17). Cham: Springer.

    Google Scholar 

  • Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11–18.

    Article  CAS  Google Scholar 

  • Bulgarelli, D., Chlaeppi, K. S., Spaepen, S., Ver Loren Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.

    Article  CAS  Google Scholar 

  • Burdman, S., Jurkevitch, E., & Okon, Y. (2000). Recent advance in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N. S. Subba Rao & Y. R. Dommergues (Eds.), Microbial interaction in agriculture forestry (Vol. II, pp. 229–250). Enfield: Science Publishers.

    Google Scholar 

  • Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32, 1682–1694.

    Article  CAS  Google Scholar 

  • Fellbaum, C. R., Gachomo, E. W., Beesetty, Y., Choudhari, S., Strahan, G. D., Pfeffer, P. E., Kiers, E. T., & Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109(7), 2666–2671.

    Article  CAS  Google Scholar 

  • Hallmann, J., & Berg, G. (2006). Spectrum and population dynamics of bacterial root endophytes. In B. Schulz, C. Boyle, & N. Sieber (Eds.), Soil biology (Vol. 9, pp. 15–31). Berlin: Springer.

    Google Scholar 

  • Hardoim, P. R., Van Overbeek, L. S., & Van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463–471.

    Article  CAS  Google Scholar 

  • Hayat, R., Ahmed, I., & Sheirdil, R. A. (2018). An overview of Plant Growth Promoting Rhizobacteria (PGPR) for sustainable agriculture. In M. Ashraf et al. (Eds.), Crop production for agricultural improvement (pp. 558–571). Dordrecht: Springer.

    Google Scholar 

  • Hennion, N., Durand, M., Vriet, C., Doidy, J., Maurousset, L., Lemoine, R., & Pourtau, N. (2018). Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiologia Plantarum, 165(1), 44–57.

    Google Scholar 

  • Ishimaru, Y., Kakei, Y., Shimo, H., Bashir, K., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. The Journal of Biological Chemistry, 286(28), 24649–24655.

    Article  CAS  Google Scholar 

  • Jousset, A., Rochat, L., Lanoue, A., Bonkowski, M., Keel, C., & Scheu, S. (2011). Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Molecular Plant-Microbe Interactions, 24, 352–358.

    Article  CAS  Google Scholar 

  • Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., Fellbaum, C. R., Kowalchuk, G. A., Hart, M. M., Bago, A., Palmer, T. M., West, S. A., Vandenkoornhuyse, P., Jansa, J., & Bücking, H. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044), 880–882.

    Article  CAS  Google Scholar 

  • Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587.

    Article  CAS  Google Scholar 

  • Liu, J., Magalhaes, J. V., Shaff, J., & Kochian, L. V. (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal, 57(3), 389–399.

    Article  CAS  Google Scholar 

  • Magalhaes, J. V., Liu, J., Guimarães, C. T., Lana, U. G. P., Alves, V. M. C., Wang, Y.-H., Schaffert, R. E., Hoekenga, O. A., Piñeros, M. A., Shaff, J. E., Klein, P. E., Carneiro, N. P., Coelho, C. M., Trick, H. N., & Kochian, L. V. (2007). A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39(9), 1156–1161.

    Article  CAS  Google Scholar 

  • Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science, 332(6033), 1097–1100.

    Article  CAS  Google Scholar 

  • Morgan, J. A. W., Bending, G. D., & White, P. J. (2005). Biological costs and benefits to plant–microbe interactions in the rhizosphere. Journal of Experimental Botany, 56(417), 1729–1739.

    Article  CAS  Google Scholar 

  • Morrissey, J. P., Dow, J. M., Mark, G. L., & O’Gara, F. (2004). Are microbes at the root of a solution to world food production? EMBO Reports, 5(10), 922–926.

    Article  CAS  Google Scholar 

  • Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010). Pathogenesis, parasitism and mutualism in the trophic space of microbe– plant interactions. Trends in Microbiology, 18(8), 365–373.

    Google Scholar 

  • Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy and Society and Environment, 15, 327–337.

    Google Scholar 

  • Pedraza, R., Motok, J., Tortora, M., Salazar, S., & Díaz-Ricci, J. (2007). Natural occurrence of Azospirillum brasilense in strawberry plants. Plant and Soil, 295, 169–178.

    Article  CAS  Google Scholar 

  • Poudel, R., Jumpponen, A., Kennelly, M. M., Rivard, C. L., Gomez-Montano, L., & Garrett, K. A. (2018). Rootstocks shape the rhizobiome: Rhizosphere and endosphere bacterial communities in the grafted tomato system. Applied and Environmental Microbiology. AEM-01765.

    Google Scholar 

  • Raaijmakers, J., Paulitz, T., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1–2), 341–361.

    Article  CAS  Google Scholar 

  • Selvakumar, G., Panneerselvam, P., & Ganeshamurthy, A. N. (2012). Bacterial mediated alleviation of abiotic stress in crops. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 205–224). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Singh, B. K., Millard, P., Whiteley, A. S., & Murrell, J. C. (2004). Unravelling rhizosphere–microbial interactions: Opportunities and limitations. Trends in Microbiology, 12(8), 386–393.

    Article  CAS  Google Scholar 

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). San Diego: Academic Press.

    Google Scholar 

  • Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2011). Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology, 193(4), 275–286.

    Article  CAS  Google Scholar 

  • Verma, A., Kumar, S., Kumar, G., Saini, J. K., Agrawal, R., Satlewal, A., & Ansari, M. W. (2018). Rhizosphere metabolite profiling: An opportunity to understand plant-microbe interactions for crop improvement. In Crop improvement through microbial biotechnology (pp. 343–361). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Weston, L. A., Ryan, P. R., & Watt, M. (2012). Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of Experimental Botany, 63, 3445–3454.

    Article  CAS  Google Scholar 

  • Yadav, A. N. (2018). Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiology, 1.5, 1–5.

    Google Scholar 

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4.

    Article  CAS  Google Scholar 

  • Zamioudis, C., & Pieterse, C. M. J. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2), 139–150.

    Article  CAS  Google Scholar 

  • Zhang, J., Subramanian, S., Stacey, G., & Yu, O. (2009). Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant Journal, 57(1), 171–183.

    Article  CAS  Google Scholar 

  • Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 68, 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Summuna, B., Gupta, S., Sheikh, P.A. (2019). Plant Growth and Health Promoting Plant-Microbe Interactions. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_13

Download citation

Publish with us

Policies and ethics