Skip to main content

Bacillus as Plant Growth Promoting Rhizobacteria (PGPR): A Promising Green Agriculture Technology

  • Chapter
  • First Online:
Plant Health Under Biotic Stress

Abstract

Bacillus is a cosmopolitan bacteria present in all kinds of environments including rhizospheric soil. Root-associated Bacillus spp. usually promote plant growth by various means, e.g., production of phytohormone precursor, i.e., indole acetic acid (IAA-auxin), phosphate solubilization, and siderophore production or serve as biocontrol and are thus termed plant growth-promoting rhizobacteria (PGPR). This genus may also be used along with other biocompatible bacteria including nitrogen-fixing species like Azospirillum and Azotobacter and hence may be called as consortia of bacteria or which can be used as co-inoculant to increase/improve the fertility of soil. This chapter focused on the application of Bacillus on different economically important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad, Z., Wu, J., Chen, L., & Dong, W. (2017). Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific Reports, 1–13. https://doi.org/10.1038/s41598-017-01940-9.

  • Ait Kaki, A., Kacem Chaouche, N., Dehimat, L., et al. (2013). Biocontrol and plant growth promotion characterization of Bacillus species isolated from Calendula officinalis rhizosphere. Indian Journal of Microbiology, 53, 447–452. https://doi.org/10.1007/s12088-013-0395-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.

    Article  CAS  Google Scholar 

  • Bhuyan, S. K., Bandyopadhyay, P., Kumar, P., et al. (2015). Interaction of Piriformospora indica with Azotobacter chroococcum. Scientific Reports, 5, 13911. https://doi.org/10.1038/srep13911.

    Article  Google Scholar 

  • Blom, J., Rueckert, C., Niu, B., et al. (2012). The complete genome of Bacillus amyloliquefaciens subsp. plantarum CAU B946 contains a gene cluster for nonribosomal synthesis of Iturin a. Journal of Bacteriology, 194, 1845–1846. https://doi.org/10.1128/JB.06762-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo, P., Ormeño-Orrillo, E., Martínez-Romero, E., & Zúñiga, D. (2010). Characterization of bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology, 41, 899–906. https://doi.org/10.1590/S1517-83822010000400008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein, E. (1972). Mineral nutrition of plants: Principles and perspectives. John Wiley and Sons, Inc., New York. Zeitschrift für Pflanzenernährung und Bodenkdunde, 132, 158–159. https://doi.org/10.1002/jpln.19721320211.

    Article  Google Scholar 

  • Freitas, M., Medeiros, F. H. V., Carvalho, S. P., et al. (2015). Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Frontiers in Plant Science, 6, 1–7. https://doi.org/10.3389/fpls.2015.00596.

    Article  Google Scholar 

  • Ghosh, S., Penterman, J. N., Little, R. D., et al. (2003). Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiology and Biochemistry, 41, 277–281.

    Article  CAS  Google Scholar 

  • Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190, 63–68.

    Article  CAS  Google Scholar 

  • Goswami, D., Dhandhukia, P., Patel, P., & Thakker, J. N. (2014). Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 169, 66–75. https://doi.org/10.1016/j.micres.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R., Vakhlu, J., Agarwal, A., & Nilawe, D. (2014). Draft genome sequence of plant growth-promoting Bacillus amyloliquefaciens strain W2 associated with Crocus sativus (saffron). Genome Announcements, 2, 2014. https://doi.org/10.1128/genomeA.00862-14.Copyright.

    Article  Google Scholar 

  • Hyakumachi, M., Nishimura, M., Arakawa, T., et al. (2013). Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes and Environments, 28, 128–134.

    Google Scholar 

  • Illmer, P., Barbato, A., & Schinner, F. (1995). Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biology and Biochemistry, 27, 265–270. https://doi.org/10.1016/0038-0717(94)00205-F.

    Article  CAS  Google Scholar 

  • Jha, C. K., & Saraf, M. (2015). Plant growth promoting Rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development, 5, 108–119. https://doi.org/10.13140/RG.2.1.5171.2164.

    Article  Google Scholar 

  • Khan, A., Ali, L., Javed, H., et al. (2016). Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Scientia Horticulturae, 200, 178–185. https://doi.org/10.1016/j.scienta.2016.01.024.

    Article  CAS  Google Scholar 

  • Kim, B. K., Chung, J. H., Kim, S. Y., et al. (2012). Genome sequence of the leaf-colonizing bacterium Bacillus sp. strain 5B6, isolated from a cherry tree. Journal of Bacteriology, 194, 3758–3759. https://doi.org/10.1128/JB.00682-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, A., Kumari, B., & Mallick, M. (2016). Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 37–40.

    Article  Google Scholar 

  • Kumari, B., Mallick, M. A., & Hora, A. (2016). Plant growth-promoting rhizobacteria (PGPR): Their potential for development of sustainable agriculture. In P. C. Trivedi (Ed.), Bio-exploitation for sustainable agriculture (pp. 1–19). Jaipur: Avinskar Publishing.

    Google Scholar 

  • Kundan, R., & Pant, G. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Biofertilizers and Biopesticides. https://doi.org/10.4172/jbfbp.1000155.

  • Kundan, R., Pant, G., Jadon, N., & Agrawal, P. K. (2015). Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers and Pesticides, 6, 1–9. https://doi.org/10.4172/2471-2728.1000155.

    Article  Google Scholar 

  • Kushwaha, A., Baily, S. B., Maxton, A., & Ram, G. D. (2013). Isolation and characterization of Pgpr associated with cauliflower roots and its effect on plant growth. International Quarterly Journal of Life Sciences, 8, 95–99.

    Google Scholar 

  • Lakshmanan, V., Castaneda, R., Rudrappa, T., & Bais, H. P. (2013). Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta, 238, 657–668. https://doi.org/10.1007/s00425-013-1920-2.

    Article  CAS  PubMed  Google Scholar 

  • Lee, B. D., Dutta, S., Ryu, H., et al. (2015). Induction of systemic resistance in panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. Journal of Ginseng Research, 39, 213–220. https://doi.org/10.1016/j.jgr.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42, 565–572. https://doi.org/10.1016/j.plaphy.2004.05.009.

    Article  CAS  PubMed  Google Scholar 

  • Mena-violante, H. G. (2007). Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Scientia Horticulturae, 113, 103–106. https://doi.org/10.1016/j.scienta.2007.01.031.

    Article  CAS  Google Scholar 

  • Myresiotis, C. K., Vryzas, Z., & Papadopoulou-mourkidou, E. (2014). Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Applied Soil Ecology, 77, 26–33. https://doi.org/10.1016/j.apsoil.2014.01.005.

    Article  Google Scholar 

  • Niazi, A., Manzoor, S., Asari, S., et al. (2014). Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: A rhizobacterium that improves plant growth and stress management. PLoS One, 9, 1–15. https://doi.org/10.1371/journal.pone.0104651.

    Article  CAS  Google Scholar 

  • Nie, L., Shah, S., Rashid, A., et al. (2002). Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiology and Biochemistry, 40, 355–361.

    Article  CAS  Google Scholar 

  • Park, K., Park, J. W., Lee, S. W., & Balaraju, K. (2013). Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor ASM. Crop Protection, 54, 199–205. https://doi.org/10.1016/j.cropro.2013.08.017.

    Article  CAS  Google Scholar 

  • Park, Y.-G., Mun, B.-G., Kang, S.-M., et al. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One, 12, e0173203. https://doi.org/10.1371/journal.pone.0173203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil, H., & Solanki, M. K. (2016a). Molecular prospecting: Advancement in diagnosis and control of rhizoctonia solani diseases in plants. In P. Kumar, V. K. Gupta, A. Kumar, & M. K. Tiwari (Eds.), Current trends in plant disease diagnostics and management practices (Fungal biology) (pp. 165–185). Cham: Springer.

    Chapter  Google Scholar 

  • Patil, H. J., & Solanki, M. K. (2016b). Microbial inoculant: Modern era of fertilizers and pesticides. InMicrobial inoculants in sustainable agricultural productivity (pp. 319–343). New Delhi: Springer India.

    Chapter  Google Scholar 

  • Pindi, P. K., Sultana, T., & Vootla, P. K. (2013). Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech, 4, 305–315. https://doi.org/10.1007/s13205-013-0154-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Podile, A., & Kishore, G. (2007). Plant growth-promoting rhizobacteria. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 195–230). Dordrecht: Springer. https://doi.org/10.1094/Phyto-71-642.

    Chapter  Google Scholar 

  • Probanza, A., Lucas, J. A., Acero, N., & Gutierrez Mañero, F. J. (1996). The influence of native rhizobacteria on european alder (Alnus glutinosa (L.) Gaertn.) growth. Plant and Soil, 182, 59–66. https://doi.org/10.1007/bf00010995.

    Article  CAS  Google Scholar 

  • Probanza, A., Lucas Garcıa, J. A., Ruiz Palomino, M., et al. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 20, 75–84. https://doi.org/10.1016/S0929-1393(02)00007-0.

    Article  Google Scholar 

  • Ram, G. (2015). Comparative analysis of 1- deaminase in selected plant growth promoting rhizobacteria (PGPR). Journal of Pure and Applied Microbiology, 9, 1587–1596.

    Google Scholar 

  • Ram, G., Ramteke, P. W., & Adhikari, G. D. (2013). Effect of PGPR isolates on growth promotion of tomato (Lycopersicon Esculentum L.). International Journal of Bioinformatics and Biological Sciences, 141–149.

    Google Scholar 

  • Saxena, J., Rana, G., & Pandey, M. (2013). Impact of addition of biochar along with Bacillus sp. on growth and yield of french beans. Scientia Horticulturae, 162, 351–356. https://doi.org/10.1016/j.scienta.2013.08.002.

    Article  CAS  Google Scholar 

  • Shao, J., Li, S., Zhang, N., et al. (2015). Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microbial Cell Factories, 14, 130. https://doi.org/10.1186/s12934-015-0323-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R. K., Kumar, D. P., Solanki, M. K., et al. (2013). Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. Journal of Basic Microbiology, 53, 451–460. https://doi.org/10.1002/jobm.201100590.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. K., Kumar, D. P., Singh, P., et al. (2014). Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regulation, 73, 91–101. https://doi.org/10.1007/s10725-013-9870-z.

    Article  CAS  Google Scholar 

  • Solanki, M. K., Kumar, S., Pandey, A. K., et al. (2012a). Diversity and antagonistic potential of Bacillus spp. associated to the rhizosphere of tomato for the management of Rhizoctonia solani. Biocontrol Science and Technology, 22, 203–217. https://doi.org/10.1080/09583157.2011.649713.

  • Solanki, M. K., Robert, A. S., Singh, R. K., et al. (2012b). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65, 330–336. https://doi.org/10.1007/s00284-012-0160-1.

  • Solanki, M. K., Singh, R. K., Srivastava, S., et al. (2015). Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Journal of Basic Microbiology, 55, 82–90. https://doi.org/10.1002/jobm.201300528.

  • Solanki, M. K., Wang, Z., Wang, F.-Y., et al. (2017). Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic Bacteria. Sugar Tech, 19, 136–147. https://doi.org/10.1007/s12355-016-0445-y.

    Article  CAS  Google Scholar 

  • Tahir, H. A. S., Gu, Q., Wu, H., et al. (2017). Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific Reports, 7, 40481. https://doi.org/10.1038/srep40481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay, S. K., & Singh, E. D. P. (2009). Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Current Microbiology. https://doi.org/10.1007/s00284-009-9464-1.

  • Verma, P., Vasudevan, V., Kashyap, B. K., et al. (2018). Direct lysis glass milk method of genomic dna extraction reveals greater archaeal diversity in anaerobic biodigester slurry as assessed through denaturing gradient gel electrophoresis. Journal of Experimental Biology and Agricultural Sciences, 6, 315–323.

    Article  Google Scholar 

  • Wang, B., Shen, Z., Zhange, F., et al. (2016a). Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress fusarium wilt in banana under greenhouse and field conditions. Pedosphere, 26, 733–744. https://doi.org/10.1016/S1002-0160(15)60083-2.

    Article  Google Scholar 

  • Wang, C., Hu, X., Liu, K., et al. (2016b). Draft genome sequence of Bacillus methylotrophicus FKM10, a plant growth-promoting rhizobacterium isolated from apple rhizosphere. American Society of Microbiology, 4, 2015–2016. https://doi.org/10.1128/genomeA.01739-15. Copyright.

    Article  Google Scholar 

  • Xie, X., Zhang, H., & Paré, P. W. (2009). Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signaling and Behavior, 4, 948–953. https://doi.org/10.4161/psb.4.10.9709.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Xu, W., Jiang, Y., et al. (2015). Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths. PLoS One, 10, 1–14. https://doi.org/10.1371/journal.pone.0124361.

    Article  CAS  Google Scholar 

  • Yan-de, J., Zhen-li, H. E., & Xiao-e, Y. (2007). Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*. Journal of Zhejiang University Science B, 8, 192–207. https://doi.org/10.1631/jzus.2007.B0192.

    Article  CAS  Google Scholar 

  • Yi, Y., de Jong, A., Frenzel, E., & Kuipers, O. P. (2017). Comparative transcriptomics of bacillus mycoides strains in response to potato-root exudates reveals different genetic adaptation of endophytic and soil isolates. Frontiers in Microbiology, 8, 1487. https://doi.org/10.3389/fmicb.2017.01487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Zhang, N., Huang, Q., et al. (2015). Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep13438.

    Article  CAS  Google Scholar 

  • Zhang, H., Sun, Y., Xie, X., et al. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal, 58, 568–577. https://doi.org/10.1111/j.1365-313X.2009.03803.x.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Xu, Y., Lai, X. H., Shan, C., Deng, Z., & Ji, Y. (2015). Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Brazilian Journal of Microbiology, 46(4), 977–989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, B.K., Solanki, M.K., Pandey, A.K., Prabha, S., Kumar, P., Kumari, B. (2019). Bacillus as Plant Growth Promoting Rhizobacteria (PGPR): A Promising Green Agriculture Technology. In: Ansari, R., Mahmood, I. (eds) Plant Health Under Biotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-13-6040-4_11

Download citation

Publish with us

Policies and ethics