Skip to main content

Clinical Application of AMPs

  • Chapter
  • First Online:
Antimicrobial Peptides

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1117))

Abstract

Antimicrobial peptides (AMPs) have been described as one of the most promising compounds able to address one of the main health threats of the twenty-first century that is the continuous rise of multidrug-resistant microorganisms. However, despite the clear advantages of AMPs as a new class of antimicrobials, such as broad spectrum of activity, high selectivity, low toxicity and low propensity to induce resistance, only a small fraction of AMPs reported thus far have been able to successfully complete all phases of clinical trials and become accessible to patients. This is mainly related to the low bioavailability and still somewhat expensive production of AMP along with regulatory obstacles. This chapter offers an overview of selected AMPs that are currently in the market or under clinical trials. Strategies for assisting AMP industrial translation and major regulatory difficulties associated with AMP approval for clinical evaluation will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afacan NJ, Yeung AT, Pena OM, Hancock RE (2012) Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr Pharm Des 18(6):807–819

    Article  CAS  PubMed  Google Scholar 

  • Ahn HS, Cho W, Kim JM, Joshi BP, Park JW, Lohani CR, Cho H, Lee KH (2008) Design and synthesis of cyclic disulfide-bonded antibacterial peptides on the basis of the alpha helical domain of Tenecin 1, an insect defensin. Bioorg Med Chem 16(7):4127–4137

    Article  CAS  PubMed  Google Scholar 

  • Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q (2017) Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Dev Ther 11:3159–3170

    Article  CAS  Google Scholar 

  • Alminana N, Alsina MA, Ortiz A, Reig F (2004) Comparative physicochemical study of SIKVAV peptide and its retro and retro-enantio analogues. Colloids Surf A: Physicochem Eng Asp 249(1–3):19–24

    Article  CAS  Google Scholar 

  • Arias M, Piga KB, Hyndman ME, Vogel HJ (2018) Improving the activity of Trp-rich antimicrobial peptides by Arg/Lys substitutions and changing the length of cationic residues. Biomolecules 8(2):1–17

    Article  CAS  Google Scholar 

  • Bednarska NG, Wren BW, Willcocks SJ (2017) The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov Today 22(6):919–926

    Article  CAS  PubMed  Google Scholar 

  • Blin T, Purohit V, Leprince J, Jouenne T, Glinel K (2011) Bactericidal microparticles decorated by an antimicrobial peptide for the easy disinfection of sensitive aqueous solutions. Biomacromolecules 12(4):1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62(11):4086–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27

    Article  CAS  PubMed  Google Scholar 

  • Cardoso MH, Cândido ES, Oshiro KGN, Rezende SB, Franco OL (2018) Peptides containing D-amino acids and retro-inverso peptides: general applications and special focus on antimicrobial peptides. In: Koutsopoulos S (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Elsevier Ltd, Kidlington, pp 131–155

    Chapter  Google Scholar 

  • Carmona-Ribeiro AM, Carrasco LDD (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15(10):18040–18083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee J, Rechenmacher F, Kessler H (2013) N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed 52(1):254–269

    Article  CAS  Google Scholar 

  • Cheneval O, Schroeder CI, Durek T, Walsh P, Huang YH, Liras S, Price DA, Craik DJ (2014) Fmoc-based synthesis of disulfide-rich cyclic peptides. J Org Chem 79(12):5538–5544

    Article  CAS  PubMed  Google Scholar 

  • Chicharro C, Granata C, Lozano R, Andreu D, Rivas L (2001) N-terminal fatty acid substitution increases the leishmanicidal activity of CA(1-7)M(2-9), a cecropin-melittin hybrid peptide. Antimicrob Agents Chemother 45(9):2441–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Q, Moellering RE, Hilinski GJ, Kim YW, Grossmann TN, Yeh JTH, Verdine GL (2015) Towards understanding cell penetration by stapled peptides. Medchemcomm 6(1):111–119

    Article  CAS  Google Scholar 

  • ClinicalTrials.gov (n.d.) https://www.clinicaltrials.gov/

  • ClinicalTrialsPage (n.d.) https://www.nia.nih.gov/health/what-are-clinical-trials-and-studies. Accessed Jul 2018.

  • Coates ARM, Halls G, Hu YM (2011) Novel classes of antibiotics or more of the same? Br J Pharmacol 163(1):184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochrane SA, Findlay B, Bakhtiary A, Acedo JZ, Rodriguez-Lopez EM, Mercier P, Vederas JC (2016) Antimicrobial lipopeptide tridecaptin A(1) selectively binds to gram-negative lipid II. Proc Natl Acad Sci U S A 113(41):11561–11566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins JJ, Koeris M, Lu TKT, et al. (2015) Bacteriophages expressing antimicrobial peptides and uses thereof. US 2015/0050717 A1

    Google Scholar 

  • Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater 7(4):1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Costa FMTA, Maia SR, Gomes PAC, Martins MCL (2015) Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Biomaterials 52:531–538

    Article  CAS  PubMed  Google Scholar 

  • d’Angelo I, Casciaro B, Miro A, Quaglia F, Mangoni ML, Ungaro F (2015) Overcoming barriers in Pseudomonas aeruginosa lung infections: engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B:Biointerfaces 135:717–725

    Article  PubMed  CAS  Google Scholar 

  • Davies JS (2003) The cyclization of peptides and depsipeptides. J Pept Sci 9(8):471–501

    Article  CAS  PubMed  Google Scholar 

  • Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17(1):134–143

    Article  CAS  PubMed  Google Scholar 

  • Di Pisa M, Chassaing G, Swiecicki JM (2015) When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. J Pept Sci 21(5):356–369

    Article  PubMed  CAS  Google Scholar 

  • Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21(9):1115–1142

    Article  CAS  PubMed  Google Scholar 

  • Doherty DH, Rosendahl MS, Smith DJ, Hughes JM, Chlipala EA, Cox GN (2005) Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor. Bioconjug Chem 16(5):1291–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doores KJ, Gamblin DP, Davis BG (2006) Exploring and exploiting the therapeutic potential of glycoconjugates. Chem Eur J 12(3):656–665

    Article  CAS  PubMed  Google Scholar 

  • DrugDataBase (n.d.) http://www.drugsdb.eu/index.php?l=c. Accessed Jul 2018.

  • Eckert RH, Yarbrough D, Shi W, et al (2014) Selectively targeted antimicrobial peptides and the use thereof. EP2801368A1 2014

    Google Scholar 

  • Falanga A, Lombardi L, Franci G, Vitiello M, Iovene MR, Morelli G, Galdiero M, Galdiero S (2016) Marine antimicrobial peptides: nature provides templates for the design of novel compounds against pathogenic bacteria. Int J Mol Sci 17(5):1–17

    Article  CAS  Google Scholar 

  • Falanga A, Nigro E, De Biasi MG, Daniele A, Morelli G, Galdiero S, Scudiero O (2017) Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules 22(7):1–15

    Article  CAS  Google Scholar 

  • Fang Y, Xue JX, Gao S, Lu AQ, Yang DJ, Jiang H, He Y, Shi K (2017) Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv 24(2):22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes P, Martens E (2017) Antibiotics in late clinical development. Biochem Pharmacol 133:152–163

    Article  CAS  PubMed  Google Scholar 

  • Fishburn CS (2008) The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci 97(10):4167–4183

    Article  CAS  PubMed  Google Scholar 

  • Fox JL (2013) Antimicrobial peptides stage a comeback(vol 31, pg 379, 2013). Nat Biotechnol 31(12):1066–1066

    Article  CAS  Google Scholar 

  • Giuliani A, Pirri G, Nicoletto SF (2007) Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol 2(1):1–33

    CAS  Google Scholar 

  • Gomes A, Teixeira C, Ferraz R, Prudencio C, Gomes P (2017) Wound-healing peptides for treatment of chronic diabetic foot ulcers and other infected skin injuries. Molecules 22(10):2–18

    Article  CAS  Google Scholar 

  • Gong Y, Andina D, Nahar S, Leroux JC, Gauthier MA (2017) Releasable and traceless PEGylation of arginine-rich antimicrobial peptides. Chem Sci 8(5):4082–4086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30(7):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greber KE, Dawgul M (2017) Antimicrobial peptides under clinical trials. Curr Top Med Chem 17(5):620–628

    Article  CAS  PubMed  Google Scholar 

  • Guiotto A, Pozzobon M, Canevari M, Manganelli R, Scarin M, Veronese FM (2003) PEGylation of the antimicrobial peptide nisin a: problems and perspectives. Farmaco 58(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Hamley IW (2014) PEG-peptide conjugates. Biomacromolecules 15(5):1543–1559

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Henninot A, Collins JC, Nuss JM (2018) The current state of peptide drug discovery: back to the future? J Med Chem 61(4):1382–1414

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann R, Berthold N, Nollmann F (2014). Modified antibiotic peptides having variable systemic release. US20140309161 A1. 2014

    Google Scholar 

  • Imura Y, Nishida M, Ogawa Y, Takakura Y, Matsuzaki K (2007) Action mechanism of tachyplesin I and effects of PEGylation. Biochim Biophys Acta-Biomembr 1768(5):1160–1169

    Article  CAS  Google Scholar 

  • Joo SH (2012) Cyclic peptides as therapeutic agents and biochemical tools. Biomol Ther 20(1):19–26

    Article  CAS  Google Scholar 

  • Kosikowska P, Lesner A (2016) Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003-2015). Expert Opin Ther Pat 26(6):689–702

    Article  CAS  PubMed  Google Scholar 

  • Lambert JN, Mitchell JP, Roberts KD (2001) The synthesis of cyclic peptides. J Chem Soc-Perkin Trans 1(5):471–484

    Article  Google Scholar 

  • Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707

    Article  CAS  PubMed  Google Scholar 

  • Lele DS, Talat S, Kumari S, Srivastava N, Kaur KJ (2015) Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a proline rich antimicrobial peptide. Eur J Med Chem 92:637–647

    Article  CAS  PubMed  Google Scholar 

  • Lundquist P, Artursson P (2016) Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 106:256–276

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Hakansson J, Ringstad L, Bjorn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:1–12

    Article  CAS  Google Scholar 

  • Marti-Centelles V, Pandey MD, Burguete MI, Luis SV (2015) Macrocyclization reactions: the importance of conformational, configurational, and template-induced preorganization. Chem Rev 115(16):8736–8834

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2014) General principles of antibiotic resistance in bacteria. Drug Discov Today Technol 11:33–39

    Article  PubMed  Google Scholar 

  • Marx V (2005) Watching peptide drugs grow up. Chem Eng News 83(11):17–84

    Article  Google Scholar 

  • Melo MN, Castanho MARB (2007) Omiganan interaction with bacterial membranes and cell wall models. Assigning a biological role to saturation. Biochim Biophys Acta-Biomembr 1768(5):1277–1290

    Article  CAS  Google Scholar 

  • Merrifield RB, Juvvadi P, Andreu D, Ubach J, Boman A, Boman HG (1995) Retro and retroenantio analogs of cecropin-melittin hybrids. Proc Natl Acad Sci U S A 92(8):3449–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migon D, Neubauer D, Kamysz W (2018) Hydrocarbon stapled antimicrobial peptides. Protein J 37(1):2–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molchanova N, Hansen PR, Franzyk H (2017) Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 22(9):1–60

    Article  CAS  Google Scholar 

  • Monaim SAHA, Jad YE, El-Faham A, de la Torre BG, Albericio F (2018) Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorg Med Chem 26(10):2788–2796

    Article  PubMed  CAS  Google Scholar 

  • Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I (2016) Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci 7(4):2492–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CJ, Beck K, Fox MA, Ulaeto D, Clark GC, Gumbleton M (2012) Pegylation of antimicrobial peptides maintains the active peptide conformation, model membrane interactions, and antimicrobial activity while improving lung tissue biocompatibility following airway delivery. Antimicrob Agents Chemother 56(6):3298–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, Raventos D, Buskov S, Christensen B, De Maria L, Taboureau O, Yaver D, Elvig-Jorgensen SG, Sorensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff M, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(7061):975–980

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Shirazi AN, Northup K, Sullivan B, Tiwari RK, Bisoffi M, Parang K (2014) Enhanced cellular uptake of short polyarginine peptides through fatty acylation and cyclization. Mol Pharm 11(8):2845–2854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otvos L, Wade JD (2014) Current challenges in peptide-based drug discovery. Front Chem 2:1–4

    Google Scholar 

  • Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:1–23

    Article  CAS  Google Scholar 

  • Qvit N, Rubin SJS, Urban TJ, Mochly-Rosen D, Gross ER (2017) Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 22(2):454–462

    Article  CAS  PubMed  Google Scholar 

  • Rader AFB, Reichart F, Weinmuller M, Kessler H (2018) Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 26(10):2766–2773

    Article  PubMed  CAS  Google Scholar 

  • Rai A, Pinto S, Evangelista MB, Gil H, Kallip S, Ferreira MGS, Ferreira L (2016a) High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater 33:64–77

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Pinto S, Velho TR, Ferreira AF, Moita C, Trivedi U, Evangelista M, Comune M, Rumbaugh KP, Simoes PN, Moita L, Ferreira L (2016b) One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials 85:99–110

    Article  CAS  PubMed  Google Scholar 

  • Rajchakit U, Sarojini V (2017) Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem 28(11):2673–2686

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt A, Neundorf I (2016) Design and application of antimicrobial peptide conjugates. Int J Mol Sci 17(5):1–21

    Article  CAS  Google Scholar 

  • Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54(4):459–476

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48(8):3112–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016(2475067):1–8

    Article  CAS  Google Scholar 

  • Schmidt EGW, Hvam ML, Antunes F, Cameron J, Viuff D, Andersen B, Kristensen NN, Howard KA (2017) Direct demonstration of a neonatal Fc receptor (FcRn)-driven endosomal sorting pathway for cellular recycling of albumin. J Biol Chem 292(32):13312–13322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorciapino MA, Serra I, Manzo G, Rinaldi AC (2017) Antimicrobial dendrimeric peptides: structure, activity and new therapeutic applications. Int J Mol Sci 18(3):1–13

    Article  CAS  Google Scholar 

  • Scott A (2018) Peptide makers face threat from biotechnology how a 1-year-old German start-up could be about to shake up a $1 billion market. Chem Eng News 96(5):4–4

    Google Scholar 

  • Sierra JM, Fuste E, Rabanal F, Vinuesa T, Vinas M (2017) An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 17(6):663–676

    Article  PubMed  Google Scholar 

  • Silva T, Magalhaes B, Maia S, Gomes P, Nazmi K, Bolscher JGM, Rodrigues PN, Bastos M, Gomes MS (2014) Killing of mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob Agents Chemother 58(6):3461–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sockolosky JT, Szoka FC (2015) The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Rev 91:109–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swiecicki JM, Di Pisa M, Lippi F, Chwetzoff S, Mansuy C, Trugnan G, Chassaing G, Lavielle S, Burlina F (2015) Unsaturated acyl chains dramatically enhanced cellular uptake by direct translocation of a minimalist oligo-arginine lipopeptide. Chem Commun 51(78):14656–14659

    Article  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL (2002) Antimicrobial dendrimeric peptides. Eur J Biochem 269(3):923–932

    Article  CAS  PubMed  Google Scholar 

  • Tapeinou A, Matsoukas MT, Simal C, Tselios T (2015) Cyclic peptides on a merry-go-round; towards drug design. Biopolymers 104(5):453–461

    Article  CAS  PubMed  Google Scholar 

  • Teixeira V, Feio MJ, Rivas L, De la Torre BG, Andreu D, Coutinho A, Bastos M (2010) Influence of lysine N-epsilon-trimethylation and lipid composition on the membrane activity of the cecropin A-melittin hybrid peptide CA(1-7)M(2-9). J Phys Chem B 114(49):16198–16208

    Article  CAS  PubMed  Google Scholar 

  • Thayer AM (2011) Making peptides at large scale. Chem Eng News 89(22):21–25

    Article  Google Scholar 

  • Trier S, Linderoth L, Bjerregaard S, Andresen TL, Rahbek UL (2014) Acylation of glucagon-like peptide-2: interaction with lipid membranes and in vitro intestinal permeability. PLoS One 9(10):1–10

    Article  CAS  Google Scholar 

  • Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GPS (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12(7):1–12

    Article  CAS  Google Scholar 

  • Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22(5):405–417

    Article  CAS  PubMed  Google Scholar 

  • Vidal L, Geffard M (2014) Lauryl-poly-L-lysine: a new antimicrobial agent? FEBS J 281:328–328

    Google Scholar 

  • Walensky LD, Bird GH (2014) Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem 57(15):6275–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial peptides in 2014. Pharmaceuticals (Basel) 8(1):123–150

    Article  CAS  Google Scholar 

  • WebPage, P (n.d.) http://www.polyphor.com/pol7080/. Accessed Jul 2018.

  • White CJ, Yudin AK (2011) Contemporary strategies for peptide macrocyclization. Nat Chem 3(7):509–524

    Article  CAS  PubMed  Google Scholar 

  • WHO (2018) http://www.who.int/antimicrobial-resistance/global-action-plan/en/.

  • Willcox MDP, Kumar N, Cole N, et al. (2013) Antimicrobial peptides and uses thereof. WO2013076666 A1. 2013

    Google Scholar 

  • WIPO (2018) https://patentscope.wipo.int/search/pt/search.jsf.

  • Wu YD, Gellman S (2008) Peptidomimetics. Acc Chem Res 41(10):1231–1232

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chen H, Vlahov IR, Cheng JX, Low PS (2006) Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci U S A 103(37):13872–13877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

  • Zong JY, Cobb SL, Cameron NR (2017) Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 5(5):872–886

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cristina L. Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, F., Teixeira, C., Gomes, P., Martins, M.C.L. (2019). Clinical Application of AMPs. In: Matsuzaki, K. (eds) Antimicrobial Peptides. Advances in Experimental Medicine and Biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_15

Download citation

Publish with us

Policies and ethics