Skip to main content

Recent Advances in Phytoremediation of Toxic Metals from Contaminated Sites: A Road Map to a Safer Environment

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

Toxic contaminants, or metal and metal-containing compounds, that are released into the environment from various anthropogenic sources cause severe environmental problems by destroying soil fertility, causing scarcity of resources as well as affecting human health. Thus, remediating environmental pollution, especially heavy metal contamination, is necessary in overcoming negative impacts on ecosystem health. Heavy metal (HM) contaminants threaten both human and environmental health. One report states there are more than 1.7 million metal-contaminated sites in central and eastern European countries that require appropriate reclamation. It was also observed that severe soil and water pollution in developing countries such as China, Pakistan, India, and Bangladesh results from small industrial effluent outputs over and near agricultural areas. Phytoremediation, although it is not new, is an efficient method to clean up toxic contaminants by employing different plant species. Although this technology is successful at the laboratory level, reports underlining the unsuccessful and inconclusive attempts in its use at the field level encouraged us to critically access why it is not satisfactory in the field, and also to find evidence that it is a promising remedial strategy without emphasizing negative perceptions. Analyzing the previous reports suggests two main themes for our attention. (1) Plant stress factors pose challenges in field application, although such were negligible with laboratory and greenhouse acclimatization. (2) Methods of phytoremediation should be assessed because often the decrease in contaminants is not adequate to demonstrate the occurrence of active remediation. Keeping these points in mind, this chapter focuses on the challenges in remediation, emphasizing rhizoremediation with detailed approaches in advanced technologies to confer environmental safety and assure human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals: concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Anderson T (1997) Development of a phytoremediation handbook: consideration for enhancing microbial degradation in the rhizosphere. http://es.epa.gov/ncerqa/ru/index.html

  • Anderson B, de Peyster A, Gad SC, Hakkinen PJ, Kamrin M, Locey B, Mehendale H, Pope C, Shugart L (2005) Encyclopedia of toxicology, 2nd edn. Elsevier (Academic), Amsterdam

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  Google Scholar 

  • Awasthi MK, Wang Q, Huang H, Rena X, Lahori AH, Mahar A, Ali A, Feng S, Li R, Zhang Z (2016) Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresour Technol 216:172–181

    Article  CAS  Google Scholar 

  • Awofolu OR (2005) A survey of trace metals in vegetation, soil and lower animals along some selected major and roads in metropolitan city of Lagos. Environ Monit Assess 105:431–447

    Article  CAS  Google Scholar 

  • Azevedo JL, Maccheroni JW, Pereira JO, de Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  Google Scholar 

  • Babalola OO, Berner DK, Amusa NA (2007) Evaluation of some bacterial isolates as germination stimulants of Striga hermonthica. Afr J Agric Res 2(1):27–30

    Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106(suppl):93–111. https://doi.org/10.1111/j.1469-8137.1987.tb04685

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution. Ecol Phytochem Biorecover 1:81–126

    CAS  Google Scholar 

  • Barber SA, Lee RB (1974) The effect of microorganisms on the absorption of manganese by plants. New Phytol 73:97–106

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C (2011) Hyperaccumulation of trace elements: from uptake and tolerance mechanisms to litter decomposition: selenium as an example. Plant Soil 341:31–35. https://doi.org/10.1007/s11104-010-0469-0

    Article  CAS  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment: a review. Bioresour Technol 100:5444–5453

    Article  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Brooks RR, Shaw S, Marfil AA (1981) The chemical form and physiological function of nickel in some Iberian Alyssum species. Physiol Plant 51:167–170

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, AngleJS BAM (1995a) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal-tolerant Silene vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995b) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Brown GE Jr, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci U S A 96:3388–3395

    Article  CAS  Google Scholar 

  • Burton CH, Turner C (2003) Manure management: treatment strategies for sustainable agriculture, 2nd edn. Silsoe Research Institute, Wrest Park

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, pp 50–76

    Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) In: Terry N, Banelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton pp 129–158

    Google Scholar 

  • Chanu LB, Gupta A (2016) Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere 156:407–411

    Article  CAS  Google Scholar 

  • Chen YX, Huang XD, Han ZY, Huang X, Hu B, Shi DZ, Wu WX (2010) Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 78:1177–1181

    Article  CAS  Google Scholar 

  • Chiang PN, Chin CY, Wang MK, Chen BT (2011) Low-molecular-weight organic acids exuded by millet (Setaria italica (L.) Beauv) roots and their effect on the remediation of cadmium-contaminated soil. Soil Sci 176:33–38. https://doi.org/10.1097/ss.0b013e318202fdc9

    Article  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szansiszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  Google Scholar 

  • De Sousa C, Ghoshal S (2012) 6-Redevelopment of brownfield sites. In: Zeman F (ed) Metropolitan sustainability. Taylor & Francis, pp 99–117

    Google Scholar 

  • Delannay X, Bauman TT, Beighley DH, Buettner MJ, Coble HD, DeFelice MS, Derting CW, Diedrick TJ, Griffin JL, Hagood ES et al (1995) Yield evaluation of a glyphosate-tolerant soybean line after treatment with glyphosate. Crop Sci 35:1461–1467

    Article  CAS  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation In: Altmanand A, Hasegawa PM Plant biotechnology and agriculture Academic Oxford, pp 309–328

    Google Scholar 

  • Ebbs DS, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated site. J Environ Qual 26:1424–1430

    Google Scholar 

  • Edwards JH, Someshwar AV (2000) Chemical, physical, and biological characteristics of agricultural and forest by-products for land application. In: Power JF, Dick WA (eds) Land application of agricultural, industrial, and municipal by-products. Soil Science Society of America, Madison, pp 1–62

    Google Scholar 

  • Felix-Henningsen P, Urushadze T, Steffens D, Kalandadze B, Narimanidze E (2010) Uptake of heavy metals by food crops from highly-polluted Chernozem-like soils in an irrigation district south of Tbilisi, eastern Georgia. Agron Res 8:781–795

    Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5:47–58

    Article  CAS  Google Scholar 

  • Gadd GM (1992) Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204

    Article  CAS  Google Scholar 

  • Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In: Lang M (ed) Brassica: characterization, functional genomics and health benefits. Nova, New York, pp 121–148

    Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z, Shi W (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  Google Scholar 

  • Gerhardt KE, Greenberg BM, Glick BR (2006) The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Curr Trends Microbiol 2:1–2

    Google Scholar 

  • Giller KE, McGrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21:841–848

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:29–39

    Article  CAS  Google Scholar 

  • Gomes MADC, Hauser-Davis RA, Souza AND, Vitória A (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nano-particle contamination. Ecotoxicol Environ Saf 134:133–147

    Article  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  Google Scholar 

  • Gulati K, Banerjee B, BalaLall S, Ray A (2010) Effects of diesel exhaust, heavy metals and pesticides on various organ systems: possible mechanisms and strategies for prevention and treatment. Indian J Exp Biol 48:710–721

    CAS  Google Scholar 

  • Guo X, Wei Z, Penn CJ, Tianfen X, Qitang W (2011) Effect of soil washing and liming on bioavailability of heavy metals in acid contaminated soil. Soil Sci Soc Am J 77:432–441

    Article  CAS  Google Scholar 

  • Gupta DK, Sandallo LM (eds) (2011) Metal toxicity in plants: perception, signaling and remediation. Springer, London

    Google Scholar 

  • Ha NTH, Sakakibara M, Sano S (2011) Accumulation of indium and other heavy metals by Eleochari sacicularis: an option for phytoremediation and phytomining. Bioresour Technol 102:2228–2234

    Article  CAS  Google Scholar 

  • Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Wei G (2012) Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl Environ Microbiol 78:5384–5394

    Article  CAS  Google Scholar 

  • Henschler D (1990) Science, occupational exposure limits, and regulations: a case study on organochlorine solvents. Am Ind Hyg Assoc J 51:523–530

    Article  CAS  Google Scholar 

  • Hess R, Schmid B (2002) Zinc supplement overdose can have toxic effects. J Pediatrics Haematol Oncol 24:582–584

    Article  Google Scholar 

  • Iqbal MP (2012) Lead pollution: a risk factor for cardiovascular disease in Asian developing countries. Pak J Pharm Sci 25:289–294

    CAS  Google Scholar 

  • Kao PH, Huang CC, Hseu ZY (2006) Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere 64:63–70

    Article  CAS  Google Scholar 

  • Kaur N, Sharma S, Kaur S (2014) Selenium in agriculture: a nutrient or contaminant for crops. Arch. Aron Soil Sci 60:1593–1624

    CAS  Google Scholar 

  • Khan AG (2006) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Kim KR, Owens G (2010) Potential for enhanced phytoremediation of landfills using biosolids: a review. J Environ Manag 91:791

    Article  CAS  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109:47–50

    Article  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lamoureux GL, Rusness DG (1986) Xenobiotic conjugation in higher plants. In: Paulson GD, Caldwell J, Hutson DH, Menn JJ (eds) Xenobiotic conjugation chemistry, ACS Symposium Series 299. American Chemical Society, Washington, DC, pp 62–105

    Chapter  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    Article  CAS  Google Scholar 

  • Lena QM, Rao GN (1997) Heavy metals in the environment. J Environ Qual 26:264

    Google Scholar 

  • Li T, Tao Q, Liang C, Shohag MJ, Yang X, Sparks DL (2013) Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii. Environ Pollut 182:248–255

    Article  CAS  Google Scholar 

  • Lin Y, Weng C, Lee S (2012) Spatial distribution of heavy metals in contaminated agricultural soils exemplified by Cr, Cu, and Zn. J Environ Eng 138:299–306. Special issue: advances in research and development of sustainable environmental technologies

    Article  CAS  Google Scholar 

  • Liu XM, Wu QT, Banks MK (2005) Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int J Phytoremediation 7:43–53

    Article  CAS  Google Scholar 

  • Lu L, Tian S, Yang X, Li T, He Z (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587

    Article  CAS  Google Scholar 

  • Luo Q, Sun L, Hu X, Zhou R (2014) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS One 9:e115581. https://doi.org/10.1371/journal.pone.0115581

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Macek T, Macková M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Drzewiecka K, Golinski P (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40

    Article  CAS  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li RH, Zhang ZQ (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    Article  CAS  Google Scholar 

  • Maiti IB, Wagner GJ, Hunt AG (1991) Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci 76:99–107

    Article  CAS  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  CAS  Google Scholar 

  • McKeehan P (2000) Brownfields: the financial, legislative and social aspects of the redevelopment of contaminated commercial and industrial properties. http://md3.csa.com/discoveryguide/brown/overview.php?SID=05c43ivvp4r0detrha3d9r5g. Accessed 17 Sept 2013

  • McLaughlin M (2002) Heavy metals. In: Lal R (ed) Encyclopedia of soil science. Dekker, New York, pp 650–653

    Google Scholar 

  • Meplan C (2011) Trace elements and ageing, a genomic perspective using selenium as an example. J Trace Elem Med Biol 25:S11–S16. https://doi.org/10.1016/j.jtemb.2010.10.002

    Article  CAS  Google Scholar 

  • Miransari M (2011) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885

    Article  CAS  Google Scholar 

  • Mosa KA, Saadoum I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7303:1–14

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth VM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2012) Roles of rhizospheric processes and plant physiology in phytoremediation of contaminated sites using oilseed Brassicas. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) The plant family Brassicaceae: contribution towards phytoremediation, Environmental pollution book series, vol 21. Springer, Dordrecht, pp 313–330

    Chapter  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Ohkawa H, Imaishi H, Shiota N, Yamada T, Inui H (1999) Cytochrome P450s and other xenobiotic metabolizing enzymes in plants. In: Brooks GT, Roberts TR (eds) Pesticide chemistry and bioscience: the food-environment challenge, Special publication 233. The Royal Society of Chemistry, Cambridge, pp 259–264

    Chapter  Google Scholar 

  • Olson JW, Mehta NS, Maier RJ (2001) Requirement of nickel metabolism protein HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol 39:176–182

    Article  CAS  Google Scholar 

  • Oosten MJV, Maggio A (2015) Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ Exp Bot 111:135–146

    Article  CAS  Google Scholar 

  • Orooj S, Sayeda SS, Kinza W, Alvina GK (2015) Phytoremediation of soils: prospects and challenges. Soil Remediat Plants. https://doi.org/10.1016/B978-0-12-799937-1.00001-2

    Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA et al (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Perez J (2012) The soil remediation industry in Europe: the recent past and future perspectives. Springer, New York, pp 2–22

    Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    Article  CAS  Google Scholar 

  • Qiu X, Shah SI, Kendall EW, Sorensen DL, Sims RC, Engelke MC (1994) Grass-enhanced bioremediation for clay soils contaminated with polynuclear aromatic-hydrocarbons. Bioremed Rhizosphere Technol 563:142–157

    Article  CAS  Google Scholar 

  • Rajakaruna N, Boyd RS (2008) Edaphic factor. In: Jørgensen SE, Fath BD (eds) General ecology, Encyclopedia of ecology, vol 2. Elsevier, Oxford, pp 1201–1207

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  Google Scholar 

  • Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587

    Article  CAS  Google Scholar 

  • Richards B, Steenhus T, Peverly J, McBride M (2000) Effect of sludge processing mode, soil texture and soil pH on metal mobility in undisturbed soil columns under accelerated loading. Environ Pollut 109:327–346

    Article  CAS  Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health, ICEHM2000. Cairo University, Egypt, pp 542–556

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475

    CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Schmitz RJ et al (2013) Patterns of population epigenomic diversity. Nature 495:193–198

    Article  CAS  Google Scholar 

  • Shi S (2013) Effects of heavy metals on environment and human health. Anhui Agric Sci 41(14):6425–6426

    CAS  Google Scholar 

  • Sims JT, Pierzynski GM (2000) Assessing the impacts of agricultural, municipal, and industrial by-products on soil quality. In Power JF, Dick WA (eds) Land application of agricultural, industrial, and municipal by-products. Soil Science Society of America, Madison, pp 237–262

    Google Scholar 

  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9

    Article  CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation–a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre DM (ed) Review of environmental contamination and toxicology, vol 223. Springer, Cham

    Google Scholar 

  • Tandy S, Schulin V, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflower. Chemosphere 62:1454–1463

    Article  CAS  Google Scholar 

  • Tinker PB (1984) The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil 76(1–3):77–91

    Article  CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  Google Scholar 

  • Tu S, Ma L, Luongo T (2004) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 258:9–19

    Article  CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97:1237–1242

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1990) Sub-cellular localization of cadmium and cadmium-binding peptides in tobacco leaves: implication of a transport function for cadmium binding peptides. Plant Physiol 92:1086–1093

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31:829–834

    Article  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from a Research Fund for International Young Scientists from National Natural Science Foundation of China (Grant No. 31750110469), and The Introduction of talent research start-up found (No. Z101021803). We also thank our laboratory colleagues and research staff members for their constructive advice and help.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awasthi, M.K. et al. (2020). Recent Advances in Phytoremediation of Toxic Metals from Contaminated Sites: A Road Map to a Safer Environment. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_4

Download citation

Publish with us

Policies and ethics