Skip to main content

Mechanism Development of Accommodation and Tolerance in Transplant

  • Chapter
  • First Online:
ABO-incompatible Organ Transplantation

Abstract

Administration of immunosuppressants in transplanted recipients promotes the allograft acceptance but also leads to serious side effects. Aiming at solving this issue in allotransplantation, researchers have paid attention to manipulate the immune response so as to induce an allograft tolerance (in which the immune response to foreign antigen or an allograft is selectively abolished due to generalized non-responsiveness or loss of the antigenic target) without immunosuppressants rather than unspecific immunosuppression. It is interesting to observe that until anti-blood group antibodies went back to normal levels in recipients several days after ABO-incompatible (ABOi) renal transplantation, there was still no allograft rejection in most of the recipients. The survival of ABOi-transplanted organs in coexistence with anti-allograft antibodies and complement which originally results in graft rejection was described as accommodation. Is this successful engraftment of ABOi allografts (accommodation) a certain level or type of allograft tolerance, or does it just reflect some other biological condition of allografts? Thus, the mechanism investigation of accommodation and tolerance could be significant for conquering humoral barriers to allotransplantation and promoting long-term survival of allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Hourmant M, Cesbron-Gautier A, Terasaki PI, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation. J Am Soc Nephrol. 2005;16:2804–12.

    Article  CAS  Google Scholar 

  2. Zhang Q, Liang LW, Gjertson DW, et al. Development of posttransplant antidonor HLA antibodies is associated with acute humoral rejection and early graft dysfunction. Transplantation. 2005;79:591–8.

    Article  Google Scholar 

  3. Lefaucheur C, Nochy D, Hill GS, et al. Determinants of poor graft outcome in patients with antibody-mediated acute rejection. Am J Transplant. 2007;7:832–41.

    Article  CAS  Google Scholar 

  4. Piazza A, Poggi E, Ozzella G, et al. Post-transplant donor-specific antibody production and graft outcome in kidney transplantation: results of sixteen-year monitoring by flow cytometry. Clin Transpl. 2006:323–36.

    Google Scholar 

  5. Bach FH, Ferran C, Hechenleitner P, et al. Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment. Nat Med. 1997;3:196–204.

    Article  CAS  Google Scholar 

  6. Haas M, Segev DL, Racusen LC, et al. C4d deposition without rejection correlates with reduced early scarring in ABO-incompatible renal allografts. J Am Soc Nephrol. 2009;20:197–204.

    Article  CAS  Google Scholar 

  7. Galili U. Xenotransplantation and ABO incompatible transplantation: the similarities they share. Transfus Apher Sci. 2006;35:45–58.

    Article  Google Scholar 

  8. Griesemer AD, Okumi M, Shimizu A, et al. Upregulation of cd59: potential mechanism of accommodation in a large animal model. Transplantation. 2009;87:1308–17.

    Article  CAS  Google Scholar 

  9. Koestner SC, Kappeler A, Schaffner T, et al. Histo-blood group type change of the graft from B to O after ABO mismatched heart transplantation. Lancet. 2004;363:1523–5.

    Article  Google Scholar 

  10. Lee PS, Poh KK. Endothelial progenitor cells in cardiovascular diseases. World J Stem Cells. 2014;6:355–66.

    Article  Google Scholar 

  11. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med. 2002;346:5–15.

    Article  Google Scholar 

  12. Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, et al. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet. 2001;357:33–7.

    Article  CAS  Google Scholar 

  13. Tasaki M, Nakajima T, Imai N, et al. Detection of allogeneic blood group A and B enzyme activities in patients with abo incompatible kidney transplantation. Glycobiology. 2010;20:1251–8.

    Article  CAS  Google Scholar 

  14. Dehoux JP, Hori S, Talpe S, et al. Specific depletion of preformed IgM natural antibodies by administration of anti-mu monoclonal antibody suppresses hyperacute rejection of pig to baboon renal xenografts. Transplantation. 2000;70:935–46.

    Article  CAS  Google Scholar 

  15. Ding JW, Zhou T, Ma L, et al. Expression of complement regulatory proteins in accommodated xenografts induced by anti-alpha-Gal IgG1 in a rat-to-mouse model. Am J Transplant. 2008;8:32–40.

    CAS  PubMed  Google Scholar 

  16. Delikouras A, Hayes M, Malde P, et al. Nitric oxide-mediated expression of Bcl-2 and Bcl-xl and protection from tumor necrosis factor-alpha-mediated apoptosis in porcine endothelial cells after exposure to low concentrations of xenoreactive natural antibody. Transplantation. 2001;71:599–605.

    Article  CAS  Google Scholar 

  17. Mohiuddin MM, Ogawa H, Yin DP, et al. Antibody-mediated accommodation of heart grafts expressing an incompatible carbohydrate antigen. Transplantation. 2003;75:258–62.

    Article  CAS  Google Scholar 

  18. Zhang C, Wang L, Zhong S, et al. Over-expression of heme oxygenase-1 does not protect porcine endothelial cells from human xenoantibodies and complement-mediated lysis. J Huazhong Univ Sci Technolog Med Sci. 2013;33:102–6.

    Article  Google Scholar 

  19. He KL, Ting AT. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol. 2002;22:6034–45.

    Article  CAS  Google Scholar 

  20. Chen G, Chen S, Chen X. Role of complement and perspectives for intervention in transplantation. Immunobiology. 2013;218:817–27.

    Article  CAS  Google Scholar 

  21. Wang H, Arp J, Liu W, et al. Inhibition of terminal complement components in presensitized transplant recipients prevents antibody-mediated rejection leading to long-term graft survival and accommodation. J Immunol. 2007;179:4451–63.

    Article  CAS  Google Scholar 

  22. Dalmasso AP, Benson BA, Johnson JS, et al. Resistance against the membrane attack complex of complement induced in porcine endothelial cells with a Gal alpha(1-3)Gal binding lectin: up-regulation of CD59 expression. J Immunol. 2000;164:3764–73.

    Article  CAS  Google Scholar 

  23. Chen Song S, Zhong S, Xiang Y, et al. Complement inhibition enables renal allograft accommodation and long-term engraftment in presensitized nonhuman primates. Am J Transplant. 2011;11:2057–66.

    Article  CAS  Google Scholar 

  24. Tan CD, Sokos GG, Pidwell DJ, et al. Correlation of donor-specific antibodies, complement and its regulators with graft dysfunction in cardiac antibody-mediated rejection. Am J Transplant. 2009;9:2075–84.

    Article  CAS  Google Scholar 

  25. Gonzalez-Stawinski GV, Tan CD, Smedira NG, et al. Decay-accelerating factor expression may provide immunoprotection against antibody-mediated cardiac allograft rejection. J Heart Lung Transplant. 2008;27:357–61.

    Article  Google Scholar 

  26. Brodsky SV, Nadasdy GM, Pelletier R, et al. Expression of the decay-accelerating factor (CD55) in renal transplants-a possible prediction marker of allograft survival. Transplantation. 2009;88:457–64.

    Article  CAS  Google Scholar 

  27. Parker W, Lin SS, Platt JL. Antigen expression in xenotransplantation: how low must it go? Transplantation. 2001;71:313–9.

    Article  CAS  Google Scholar 

  28. Sprent J, Kishimoto H. The thymus and central tolerance. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356:609–16.

    Article  CAS  Google Scholar 

  29. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5:772–82.

    Article  CAS  Google Scholar 

  30. Chopek MW, Simmons RL, Platt JL. ABO-incompatible renal transplantation: initial immunopathologic evaluation. Transplant Proc. 1987;19:4553–7.

    CAS  PubMed  Google Scholar 

  31. Bannett AD, McAlack RF, Morris M, et al. ABO incompatible renal transplantation: a qualitative analysis of native endothelial tissue ABO antigens after transplant. Transplant Proc. 1989;21:783–5.

    CAS  PubMed  Google Scholar 

  32. Metzger TC, Anderson MS. Control of central and peripheral tolerance by Aire. Immunol Rev. 2011;241:89–103.

    Article  CAS  Google Scholar 

  33. Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol. 2010;11:21–7.

    Article  CAS  Google Scholar 

  34. Braza F, Dugast E, Panov I, et al. Central role of CD45RA-Foxp3hi memory regulatory T cells in clinical kidney transplantation tolerance. J Am Soc Nephrol. 2015;26:1795–805.

    Article  CAS  Google Scholar 

  35. Skoberne M1, Beignon AS, Larsson M, et al. Apoptotic cells at the crossroads of tolerance and immunity. Curr Top Microbiol Immunol. 2005;289:259–92.

    CAS  PubMed  Google Scholar 

  36. Ruiz P, Maldonado P, Hidalgo Y, et al. Transplant tolerance: new insights and strategies for long-term allograft acceptance. Clin Dev Immunol. 2013;2013:210506.

    Article  Google Scholar 

  37. Haanstra KG, Ringers J, Sick EA, et al. Prevention of kidney allograft rejection using anti-CD40 and anti-CD86 in primates. Transplantation. 2003;75:637–43.

    Article  CAS  Google Scholar 

  38. Pearson TC, Trambley J, Odom K, et al. Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation. 2002;74:933–40.

    Article  CAS  Google Scholar 

  39. Adams AB, Shirasugi N, Jones TR, et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol. 2005;174:542–50.

    Article  CAS  Google Scholar 

  40. Haanstra KG, Sick EA, Ringers J, et al. Costimulation blockade followed by a 12-week period of cyclosporine A facilitates prolonged drug-free survival of rhesus monkey kidney allografts. Transplantation. 2005;79:1623–6.

    Article  CAS  Google Scholar 

  41. Scandling JD, Busque S, Dejbakhsh-Jones S, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med. 2008;358:362–8.

    Article  CAS  Google Scholar 

  42. Scandling JD, Busque S, Dejbakhsh-Jones S, et al. Tolerance and withdrawal of immunosuppressive drugs in patients given kidney and hematopoietic cell transplants. Am J Transplant. 2012;12:1133–45.

    Article  CAS  Google Scholar 

  43. Scandling JD, Busque S, Shizuru JA, et al. Induced immune tolerance for kidney transplantation. N Engl J Med. 2011;365:1359–60.

    Article  CAS  Google Scholar 

  44. Leventhal J, Abecassis M, Miller J, et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 2012;4:124ra128.

    Article  Google Scholar 

  45. Kawai T, Sachs DH, Sprangers B, et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am J Transplant. 2014;14:1599–611.

    Article  CAS  Google Scholar 

  46. Kitchens WH. Nonhuman primate models of transplant tolerance: closer to the holy grail. Curr Opin Organ Transplant. 2016;21:59–65.

    Article  CAS  Google Scholar 

  47. Anderson A, Martens CL, Hendrix R, et al. Expanded nonhuman primate Tregs exhibit a unique gene expression signature and potently downregulate alloimmune responses. Am J Transplant. 2008;8:2252–64.

    Article  CAS  Google Scholar 

  48. Lei J, Kim JI, Shi S, et al. Pilot study evaluating regulatory T cell-promoting immunosuppression and nonimmunogenic donor antigen delivery in a nonhuman primate islet allotransplantation model. Am J Transplant. 2015;15:273–2749.

    Google Scholar 

  49. Bashuda H, Kimikawa M, Seino K, et al. Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates. J Clin Invest. 2005;115:1896–902.

    Article  CAS  Google Scholar 

  50. Carreras-Planella L, Borràs FE, Franquesa M. Tolerance in kidney transplantation: what is on the B side? Mediators Inflamm. 2016;2016:8491956.

    Article  Google Scholar 

  51. Warren DS, Zachary AA, Sonnenday CJ, et al. Successful renal transplantation across simultaneous ABO incompatible and positive crossmatch barriers. Am J Transplant. 2004;4:561–8.

    Article  Google Scholar 

  52. Morath C, Zeier M, Döhler B, et al. ABO-incompatible kidney transplantation. Front Immunol. 2017;8:234.

    Article  Google Scholar 

  53. Lynch RJ, Platt JL. Accommodation in renal transplantation: unanswered questions. Curr Opin Organ Transplant. 2010;15:481–5.

    Article  Google Scholar 

  54. Dehoux JP, Gianello P. Accommodation and antibodies. Transpl Immunol. 2009;21:106–10.

    Article  CAS  Google Scholar 

  55. Griesemer AD, Okumi M, Shimizu A, et al. Upregulation of CD59: potential mechanism of accommodation in a large animal model. Transplantation. 2009;87(9):1308–17.

    Article  CAS  Google Scholar 

  56. West LJ, Pollock-Barziv SM, Lee KJ, et al. Graft accommodation in infant recipients of ABO-incompatible heart transplants: donor ABH antigen expression in graft biopsies. J Heart Lung Transplant. 2001;20(2):222.

    Article  Google Scholar 

  57. Tang AH, Platt JL. Accommodation of grafts: implications for health and disease. Hum Immunol. 2007;68:645–51.

    Article  Google Scholar 

  58. Heslan JM, Renaudin K, Thebault P, et al. New evidence for a role of allograft accommodation in long-term tolerance. Transplantation. 2006;82:1185–93.

    Article  Google Scholar 

  59. Jin YP, Jindra PT, Gong KW, et al. Anti-HLA class I antibodies activate endothelial cells and promote chronic rejection. Transplantation. 2005;79:S19–21.

    Article  CAS  Google Scholar 

  60. Smith RN, Kawai T, Boskovic S, et al. Four stages and lack of stable accommodation in chronic alloantibody-mediated renal allograft rejection in cynomolgus monkeys. Am J Transplant. 2008;8:1662–72.

    Article  CAS  Google Scholar 

  61. Suhr BD, Black SM, Guzman-Paz M, et al. Inhibition of the membrane attack complex of complement for induction of accommodation in the hamster-to-rat heart transplant model. Xenotransplantation. 2007;14:572–9.

    Article  Google Scholar 

  62. Takahashi K. Recent findings in ABO-incompatible kidney transplantation: classification and therapeutic strategy for acute antibody-mediated rejection due to ABO-blood-group-related antigens during the critical period preceding the establishment of accommodation. Clin Exp Nephrol. 2007;11:128–41.

    Article  CAS  Google Scholar 

  63. Park WD, Grande JP, Ninova D, et al. Accommodation in ABO-incompatible kidney allografts, a novel mechanism of self-protection against antibody-mediated injury. Am J Transplant. 2003;3:952–60.

    Article  CAS  Google Scholar 

  64. Newell KA, Phippard D, Turka LA. Regulatory cells and cell signatures in clinical transplantation tolerance. Curr Opin Immunol. 2011;23(5):655–9.

    Article  CAS  Google Scholar 

  65. Adams AB, Newell KA. B cells in clinical transplantation tolerance. Semin Immunol. 2012;24(2):92–5.

    Article  CAS  Google Scholar 

  66. Kitchens WH, Adams AB. Nonhuman primate models of transplant tolerance: closer to the holy grail. Curr Opin Organ Transplant. 2016;21(1):59–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Rong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Rong, R. (2019). Mechanism Development of Accommodation and Tolerance in Transplant. In: Wang, Y. (eds) ABO-incompatible Organ Transplantation. Springer, Singapore. https://doi.org/10.1007/978-981-13-3399-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3399-6_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3398-9

  • Online ISBN: 978-981-13-3399-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics