Skip to main content

Advanced Techniques for Characterizing DBP Precursors from Eutrophic Water and Their Applications for DBP Prediction

  • Chapter
  • First Online:
Water and Wastewater Treatment Technologies

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Algogenic organic matter (AOM) in eutrophic water has become a critical problem for the sustainable operation of water treatment plants. As AOM is a high-yielding precursor of disinfection by-products (DBPs), its occurrence in water sources intensively raises public attention on the issues of safe and stable supply of drinking water. This chapter presents current advanced knowledge of AOM characterization and their applications for the prediction of DBP formation upon chlorination. Herein, two dominant classes of carbonaceous DBP (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs), were reviewed as major products of DBP from the eutrophic water. Overall, AOM is higher yielding THM and HAA precursors upon chlorination compared to terrestrial natural organic matter (NOM). Of the characterization tools, fluorescent spectrometry, i.e., excitation–emission matrix (EEM), is an advanced proxy to trace AOM-derived C-DBP formation over traditional bulk parameters or ultraviolet absorbance because of its greater sensitivity and selectivity. However, future work may use EEM technique in combination with bulk parameters, such as chlorine consumption, or MW properties to increase its predictability to AOM-DBP formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beauchamp N, Laflamme O, Simard S, Dorea C, Pelletier G, Bouchard C, Rodriguez M (2018) Relationships between DBP concentrations and differential UV absorbance in full-scale conditions. Water Res 131:110–121

    Article  CAS  Google Scholar 

  • Bellar TA, Lichtenberg JJ, Kroner RC (1974) The occurrence of organohalides in chlorinated drinking waters. J Am Water Works Assoc 66(12):703–706

    Article  CAS  Google Scholar 

  • Boorman GA (1999) Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Health Persp 107(Suppl 1):207–217

    Article  CAS  Google Scholar 

  • Chang E, Chiang P, Liiang C (1998) The occurrence of disinfection by-products in Taiwan drinking water. Toxicol Environ Chem 67(3–4):333–349

    Article  CAS  Google Scholar 

  • Chang HH, Tung HH, Chao CC, Wang GS (2010) Occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in drinking water of Taiwan. Environ Monit Assess 162(1):237–250

    Article  CAS  Google Scholar 

  • Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37(24):5701–5710

    Article  CAS  Google Scholar 

  • Chen B, Westerhoff P (2010) Predicting disinfection by-product formation potential in water. Water Res 44(13):3755–3762

    Article  CAS  Google Scholar 

  • Chowdhury S, Champagne P, McLellan PJ (2009) Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review. Sci Total Environ 407(14):4189–4206

    Article  CAS  Google Scholar 

  • Chowdhury S, Rodriguez MJ, Serodes J (2010) Model development for predicting changes in DBP exposure concentrations during indoor handling of tap water. Sci Total Environ 408(20):4733–4743

    Article  CAS  Google Scholar 

  • Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107(2):402–418

    Article  CAS  Google Scholar 

  • Condie LW (1990) Toxicological effects associated with drinking water disinfectants and their by-products. In: Joley RL, Condie LW, Jonson JD, Katz S (eds) Water chlorination: chemistry, environmental impact and health effects. Lewis Chelsea, MI, pp 281–291

    Google Scholar 

  • Coral LA, Zamyadi A, Barbeau B, Bassetti FJ, Lapolli FR, Prevost M (2013) Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: impacts on cell integrity and chlorination by-product formation. Water Res 47(9):2983–2994

    Article  CAS  Google Scholar 

  • DeAngelo AB, McMillan LP (1990) Carcinogenicity of chlorinated acetic acids. In: Joley RL, Condie LW, Jonson JD, Katz S (eds) Water chlorination: chemistry, environmental impact and health effects. Lewis Chelsea, MI, pp 193–199

    Google Scholar 

  • Dickenson ERV, Summers RS, CrouĂ© JP, Gallard H (2008) Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic β-dicarbonyl acid model compounds. Environ Sci Technol 42(9):3226–3233

    Article  CAS  Google Scholar 

  • Dunnick JK, Haseman JK, Lilja HS, Wyand S (1985) Toxicity and carcinogenicity of chlorodibromomethane in Fischer 344/N rats and B6C3F1 mice. Fund Appl Toxicol 5(6):1128–1136

    Article  CAS  Google Scholar 

  • Fang J, Yang X, Ma J, Shang C, Zhao Q (2010) Characterization of algal organic matter and formation of DBPs from chlor (am) ination. Water Res 44(20):5897–5906

    Article  CAS  Google Scholar 

  • Fogg G, Nalewajko C, Watt W (1965) Extracellular products of phytoplankton photosynthesis. Proc R Soc Lond B Biol Sci 162(989):517–534

    Article  CAS  Google Scholar 

  • Ged EC, Chadik PA, Boyer TH (2015) Predictive capability of chlorination disinfection byproducts models. J Environ Manag 149:253–262

    Article  CAS  Google Scholar 

  • Goslan EH, Seigle C, Purcell D, Henderson R, Parsons SA, Jefferson B, Judd SJ (2017) Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter. Chemosphere 170:1–9

    Article  CAS  Google Scholar 

  • Graham NJ, Wardlaw VE, Perry R, Jiang JQ (1998) The significance of algae as trihalomethane precursors. Water Sci Technol 37(2):83–89

    Article  CAS  Google Scholar 

  • Hao R, Ren H, Li J, Ma Z, Wan H, Zheng X, Cheng S (2012) Use of three-dimensional excitation and emission matrix fluorescence spectroscopy for predicting the disinfection by-product formation potential of reclaimed water. Water Res 46(17):5765–5776

    Article  CAS  Google Scholar 

  • Henderson R, Parsons SA, Jefferson B (2008a) The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res 42(8–9):1827–1845

    Article  CAS  Google Scholar 

  • Henderson RK, Baker A, Parsons SA, Jefferson B (2008b) Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res 42(13):3435–3445

    Article  CAS  Google Scholar 

  • Her N, Amy G, Park HR, Song M (2004) Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res 38(6):1427–1438

    Article  CAS  Google Scholar 

  • Hidayah EN, Chou YC, Yeh HH (2017) Comparison between HPSEC-OCD and F-EEMs for assessing DBPs formation in water. J Environ Sci Health A 52(4):391–402

    Article  CAS  Google Scholar 

  • Hoehn RC, Barnes DB, Thompson BC, Randall CW, Grizzard TJ, Shaffer PT (1980) Algae as sources of trihalomethane precursors. J Am Water Works Assoc:344–350

    Article  CAS  Google Scholar 

  • Hong HC, Huang FQ, Wang FY, Ding LX, Lin HJ, Liang Y (2013) Properties of sediment NOM collected from a drinking water reservoir in South China, and its association with THMs and HAAs formation. J Hydrol 476:274–279

    Article  CAS  Google Scholar 

  • Hong HC, Mazumder A, Wong MH, Liang Y (2008) Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition. Water Res 42(20):4941–4948

    Article  CAS  Google Scholar 

  • Hong HC, Wong MH, Liang Y (2009) Amino acids as precursors of trihalomethane and haloacetic acid formation during chlorination. Archives of Environ Contam Toxicol 56(4):638–645

    Article  CAS  Google Scholar 

  • Hua G, Kim J, Reckhow DA (2014) Disinfection byproduct formation from lignin precursors. Water Res 63:285–295

    Article  CAS  Google Scholar 

  • Hua G, Reckhow DA (2007) Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environ Sci Technol 41(9):3309–3315

    Article  CAS  Google Scholar 

  • Hua G, Reckhow DA, Abusallout I (2015) Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources. Chemosphere 130:82–89

    Article  CAS  Google Scholar 

  • Hua LC, Lin JL, Chen PC, Huang CP (2017) Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts. Chem Eng J 328:1022–1030

    Article  CAS  Google Scholar 

  • Hua LC, Lin JL, Syue MY, Huang CP, Chen PC (2018a) Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation. Sci Total Environ 621:1467–1474

    Article  CAS  Google Scholar 

  • Hua LC, Lin JL, Zhao SJ, Huang CP (2018b) Probing algogenic organic matter (AOM) by size-exclusion chromatography to predict AOM-derived disinfection by-product formation. Manuscript submitted to Sci Total Environ (Under review)

    Google Scholar 

  • Huang J, Graham N, Templeton MR, Zhang Y, Collins C, Nieuwenhuijsen M (2009) A comparison of the role of two blue–green algae in THM and HAA formation. Water Res 43(12):3009–3018

    Article  CAS  Google Scholar 

  • Johnstone DW, Miller CM (2009) Fluorescence excitation–emission matrix regional transformation and chlorine consumption to predict trihalomethane and haloacetic acid formation. Environ Eng Sci 26(7):1163–1170

    Article  CAS  Google Scholar 

  • Johnstone DW, Sanchez NP, Miller CM (2009) Parallel factor analysis of excitation–emission matrices to assess drinking water disinfection byproduct formation during a peak formation period. Environ Eng Sci 26(10):1551–1559

    Article  CAS  Google Scholar 

  • Koivusalo M, Vartiainen T (1997) Drinking water chlorination by-products and cancer. Rev Environ Health 12(2):81–90

    Google Scholar 

  • Korshin GV, Li CW, Benjamin MM (1997) Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res 31(7):1787–1795

    Article  CAS  Google Scholar 

  • Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Aieta EM (1989) The occurrence of disinfection by-products in US drinking water. J Am Water Works Assoc 81(8):41–53

    Article  CAS  Google Scholar 

  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40(23):7175–7185

    Article  CAS  Google Scholar 

  • Kulkarni P, Chellam S (2010) Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment. Sci Total Environ 408(19):4202–4210

    Article  CAS  Google Scholar 

  • Leenheer JA, CrouĂ© JP (2003) Peer reviewed: characterizing aquatic dissolved organic matter. Environ Sci Technol 37(1):18A–26A

    Article  CAS  Google Scholar 

  • Leloup M, Nicolau R, Pallier V, YĂ©prĂ©mian C, Feuillade-Cathalifaud G (2013) Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. J Environ Sci 25(6):1089–1097

    Article  CAS  Google Scholar 

  • Li L, Gao N, Deng Y, Yao J, Zhang K (2012) Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. Water Res 46(4):1233–1240

    Article  CAS  Google Scholar 

  • Li L, Wang Z, Rietveld LC, Gao N, Hu J, Yin D, Yu S (2014) Comparison of the effects of extracellular and intracellular organic matter extracted from microcystis aeruginosa on ultrafiltration membrane fouling: dynamics and mechanisms. Environ Sci Technol 48(24):14549–14557

    Article  CAS  Google Scholar 

  • Li WT, Jin J, Li Q, Wu CF, Lu H, Zhou Q, Li A-M (2016) Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment. Water Res 93:1–9

    Article  CAS  Google Scholar 

  • Liang L, Singer PC (2003) Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water. Environ Sci Technol 37(13):2920–2928

    Article  CAS  Google Scholar 

  • Lin JL, Hua LC, Hung SK, Huang CP (2018) Algal removal from cyanobacteria-rich waters by preoxidation-assisted coagulation–flotation: effect of algogenic organic matter release on algal removal and trihalomethane formation. J. Environ. Sci. 63:147–155

    Article  Google Scholar 

  • Lin JL, Hua LC, Wu Y, Huang CP (2016) Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: effects of oxidation on algal cell viability and manganese precipitation. Water Res 89:261–269

    Article  CAS  Google Scholar 

  • Linden LG, Lewis DM, Burch MD, Brookes JD (2004) Interannual variability in rainfall and its impact on nutrient load and phytoplankton in Myponga Reservoir, South Australia. Int J River Basin Manag 2(3):169–179

    Article  Google Scholar 

  • Lui YS, Qiu JW, Zhang YL, Wong MH, Liang Y (2011) Algal-derived organic matter as precursors of disinfection by-products and mutagens upon chlorination. Water Res 45(3):1454–1462

    Article  CAS  Google Scholar 

  • Malliarou E, Collins C, Graham N, Nieuwenhuijsen MJ (2005) Haloacetic acids in drinking water in the United Kingdom. Water Res 39(12):2722–2730

    Article  CAS  Google Scholar 

  • Mao J, Cory RM, McKnight DM, Schmidt-Rohr K (2007) Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org Geochem 38(8):1277–1292

    Article  CAS  Google Scholar 

  • Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpää M (2011) An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 83(11):1431–1442

    Article  CAS  Google Scholar 

  • Matilainen A, Vepsäläinen M, Sillanpää M (2010) Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci 159(2):189–197

    Article  CAS  Google Scholar 

  • Nguyen M, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M (2005) Characteristics and reactivity of algae-produced dissolved organic carbon. J Environ Eng 131(11):1574–1582

    Article  CAS  Google Scholar 

  • Peleato NM, Andrews RC (2015) Comparison of three-dimensional fluorescence analysis methods for predicting formation of trihalomethanes and haloacetic acids. J Environ Sci 27:159–167

    Article  Google Scholar 

  • Peleato NM, Legge RL, Andrews RC (2018) Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products. Water Res 136:84–94

    Article  CAS  Google Scholar 

  • Pifer AD, Fairey JL (2012) Improving on SUVA254 using fluorescence-PARAFAC analysis and asymmetric flow-field flow fractionation for assessing disinfection byproduct formation and control. Water Res 46(9):2927–2936

    Article  CAS  Google Scholar 

  • Pivokonsky M, Naceradska J, Brabenec T, Novotna K, Baresova M, Janda V (2015) The impact of interactions between algal organic matter and humic substances on coagulation. Water Res 84:278–285

    Article  CAS  Google Scholar 

  • Pivokonsky M, Naceradska J, Kopecka I, Baresova M, Jefferson B, Li X, Henderson RK (2016) The impact of algogenic organic matter on water treatment plant operation and water quality: a review. Crit Rev Environ Sci Technol 46(4):291–335

    Article  CAS  Google Scholar 

  • Plummer JD, Edzwald JK (2001) Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production. Environ Sci Technol 35(18):3661–3668

    Article  CAS  Google Scholar 

  • Qu F, Liang H, He J, Ma J, Wang Z, Yu H, Li G (2012) Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling. Water Res 46(9):2881–2890

    Article  CAS  Google Scholar 

  • Reckhow D, Singer P (1985) Mechanisms of organic halide formation during fulvic acid chlorination and implications with respect to preozonation. In: Joley RL, Bull RJ, Davis WP, Katz S, Roberts MH, Jacobs VA (eds) Water chlorination: chemistry, environmental impact and health effects 5. Lewis Chelsea, MI, pp 1229–1257

    Google Scholar 

  • Reckhow DA, Singer PC, Malcolm RL (1990) Chlorination of humic materials: byproduct formation and chemical interpretations. Environ Sci Technol 24(11):1655–1664

    Article  CAS  Google Scholar 

  • Revsbech N, Jbrgensen B, Blackburn T, Santschi P, Benoit G, Tenbrink M (1994) Aquatic fulvic acids in algal-rich Antarctic ponds. Limnol Oceanogr 39:1972–1979

    Article  Google Scholar 

  • Roccaro P, Vagliasindi FGA, Korshin GV (2009) Changes in NOM fluorescence caused by chlorination and their associations with disinfection by-products formation. Environ Sci Technol 43(3):724–729

    Article  CAS  Google Scholar 

  • Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Water Treat Exam 23:234–243

    Google Scholar 

  • Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321(1–3):21–46

    Article  CAS  Google Scholar 

  • Scully F, Kravitz R, Howell G, Speed M, Arber R, Jolley R (1985) Contribution of proteins to the formation of trihalomethanes on chlorination of natural waters. In: Joley RL, Bull RJ, Davis WP, Katz S, Roberts MH, Jacobs VA (eds) Water chlorination: chemistry, environmental impact and health effects 5. Lewis Chelsea, MI, pp 807–820

    Google Scholar 

  • Scully FE, Howell GD, Kravitz R, Jewell JT, Hahn V, Speed M (1988) Proteins in natural waters and their relation to the formation of chlorinated organics during water disinfection. Environ Sci Technol 22(5):537–542

    Article  CAS  Google Scholar 

  • Sillanpää M, Matilainen A, Lahtinen T (2015) Characteization of NOM. In: Sillanpää M (ed) Natural organic matter in water: characterization and treatment method. Butterworth-Heinemann, Oxford, pp 17–53

    Chapter  Google Scholar 

  • Singer P, Weinberg H, Krasner S, Arora H, Najm I (2002) Relative dominance of HAAs and THMs in treated drinking water. AWWA Research Foundation and American Water Works Association, Denver, Colo. Rep 90844

    Google Scholar 

  • Singer PC (1994) Control of disinfection by-products in drinking water. J Environ Eng 120(4):727–744

    Article  CAS  Google Scholar 

  • Sohn J, Gatel D, Amy G (2001) Monitoring and modeling of disinfection by-products (DBPs). Environ Monit Assess 70(1):211–222

    Article  CAS  Google Scholar 

  • Tomlinson A, Drikas M, Brookes JD (2016) The role of phytoplankton as pre-cursors for disinfection by-product formation upon chlorination. Water Res 102:229–240

    Article  CAS  Google Scholar 

  • Trussell RR, Umphres MD (1978) The formation of trihalomethanes. J Am Water Works Assoc 70(11):604–612

    Article  CAS  Google Scholar 

  • Uyak V, Demirbas KD (2014) Formation of disinfection byproducts (DBPs) in surface water sources: differential ultraviolet (UV) absorbance approach. Environ Forensics 15(1):52–65

    Article  Google Scholar 

  • Wang W, Ye B, Yang L, Li Y Wang Y (2007) Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes. Environ Int 33 (2):219–225

    Article  CAS  Google Scholar 

  • Watt WD (1966) Release of dissolved organic material from the cells of phytoplankton populations. Proc R Soc Lond B Biol Sci 164(997):521–551

    Article  CAS  Google Scholar 

  • Wert EC, Rosario-Ortiz FL (2013) Intracellular organic matter from cyanobacteria as a precursor for carbonaceous and nitrogenous disinfection byproducts. Environ Sci Technol 47(12):6332–6340

    Article  CAS  Google Scholar 

  • Xue C, Wang Q, Chu W, Templeton MR (2014) The impact of changes in source water quality on trihalomethane and haloacetonitrile formation in chlorinated drinking water. Chemosphere 117:251–255

    Article  CAS  Google Scholar 

  • Yang X, Guo W, Shen Q (2011) Formation of disinfection byproducts from chlor(am)ination of algal organic matter. J Hazard Mater 197:378–388

    Article  CAS  Google Scholar 

  • Yang X, Shang C, Lee W, Westerhoff P, Fan C (2008) Correlations between organic matter properties and DBP formation during chloramination. Water Res 42(8–9):2329–2339

    Article  CAS  Google Scholar 

  • Zhao ZY, Gu JD, Fan XJ, Li HB (2006) Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments. J Hazard Mater 134(1):60–66

    Article  CAS  Google Scholar 

  • Zhou S, Shao Y, Gao N, Deng Y, Li L, Deng J, Tan C (2014) Characterization of algal organic matters of Microcystis aeruginosa: biodegradability, DBP formation and membrane fouling potential. Water Res 52:199–207

    Article  CAS  Google Scholar 

  • Zhou S, Zhu S, Shao Y, Gao N (2015) Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation. Water Res 72:381–390

    Article  CAS  Google Scholar 

  • Zhu M, Gao N, Chu W, Zhou S, Zhang Z, Xu Y, Dai Q (2015) Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. Ecotoxicol Environ Saf 120:256–262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihpin Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hua, LC., Huang, C. (2019). Advanced Techniques for Characterizing DBP Precursors from Eutrophic Water and Their Applications for DBP Prediction. In: Bui, XT., Chiemchaisri, C., Fujioka, T., Varjani, S. (eds) Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_3

Download citation

Publish with us

Policies and ethics