Skip to main content

Computer System for Designing Musical Expressiveness in an Automatic Music Composition Process

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 951))

  • 859 Accesses

Abstract

Artificial Intelligent Systems have shown great potential in the musical domain. One task in which these techniques have shown special promise is in the automatic music composition. This article describes the development of an algorithm for designing musical expressiveness for a tonal melody generated by computer. The method employed is based on a model of self-recognition of the harmonic structures contained in the melody and, by means of the “harmonic function” carried by every single one of these, provides useful information for the dynamics. The article is intended to demonstrate the effectiveness of the method by applying it to some (tonal) musical pieces of the 18th and of the 19th century. At the same time it is going to indicate ways to improve the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miranda, E.R., Biles, J.A.: Evolutionary Computer Music. Springer, London (2007). https://doi.org/10.1007/978-1-84628-600-1

    Book  Google Scholar 

  2. Canazza, S., De Poli, G., Drioli, C., Rodà, A., Vidolin, A.: Modeling and control of expressiveness in music performance. Proc. IEEE 92(4), 686–701 (2004)

    Article  Google Scholar 

  3. Minsky, M.L., Laske, O.: A conversation with Marvin Minsky. AI Mag. 13(3), 31–45 (1992)

    Google Scholar 

  4. Nielsen, R.: Musical forms. Bongiovanni Editore (1961)

    Google Scholar 

  5. Baroni, M., Jacoboni, C., Dal Monte, R.: The music rules, EDT/SidM (1999)

    Google Scholar 

  6. de la Motte, D.: Manuale di armonia. Bärenreiter (1976)

    Google Scholar 

  7. Ames, C.: The Markov process as a compositional model: a survey and tutorial. Leonardo 22(2), 175–187 (1989)

    Article  Google Scholar 

  8. Amatriain, X., Bonada, J., Loscos, A., Arcos, J., Verfaille, V.: Content-based transformation. J. New Music Res. 32(1), 95–114 (2003)

    Article  Google Scholar 

  9. Bresin, R., Battel, G.U.: Articulation strategies in expressive piano performance analysis of legato, staccato, and repeated notes in performances of the andante movement of Mozart’s sonata in g major (k 545). J. New Music Res. 29(3), 211–224 (2000)

    Article  Google Scholar 

  10. Todd, N.: The dynamics of dynamics: a model of musical expression. J. Acoust. Soc. Am. 91, 3540 (1992)

    Article  Google Scholar 

  11. Friberg, A.: A Quantitative Rule System for Musical Performance, PhD thesis, KTH, Sweden (1995)

    Google Scholar 

  12. Grachten, M., Widmer, G.: Linear basis models for prediction and analysis of musical expression. J. New Music Res. 41(4), 311–322 (2012)

    Article  Google Scholar 

  13. Rodà, A., Canazza, S., De Poli, G.: Clustering affective qualities of classical music: beyond the valencearousal plane. IEEE Trans. Affect. Comput. 5(4), 364–376 (2014)

    Article  Google Scholar 

  14. Ramirez, R., Hazan, A.: Rule induction for expressive music performance modeling. In: ECML Workshop Advances in Inductive Rule Learning, September 2004

    Google Scholar 

  15. Ramirez, R., Maestre, E., Serra, X.: A rule-base evolutionary approach to music performance modeling. IEEE Trans. Evol. Comput. 16(1), 96–107 (2012)

    Article  Google Scholar 

  16. Clark, P., Boswell, R.: Rule induction with CN2: some recent improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0017011

    Chapter  Google Scholar 

  17. Lindgren, T., Boström, H.: Classification with intersecting rules. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 395–402. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36169-3_31

    Chapter  Google Scholar 

  18. de la Motte, D.: Manuale di armonia. Bärenreiter (1976)

    Google Scholar 

  19. Coltro, B.: Lezioni di armonia complementare. Zanibon (1979)

    Google Scholar 

  20. Schonber, A.: Theory of Harmony. University of California Press, Berkeley (1983)

    Google Scholar 

  21. Della Ventura, M.: Toward an analysis of polyphonic music in the textual symbolic segmentation. In: Proceedings of the 2nd International Conference on Computer, Digital Communications and Computing (ICDCC 2013), Brasov, Romania (2013)

    Google Scholar 

  22. Della Ventura, M.: Rhythm analysis of the “Sonorous Continuum” and conjoint evaluation of the musical entropy. In: Proceedings of the 13th International Conference on Acoustics & Music: Theory & Applications (AMTA 2012), Iasi, Romania, pp. 16–21 (2012)

    Google Scholar 

  23. Bent, I.: Analysis. Macmillan Publishers LTD, London (1980)

    MATH  Google Scholar 

  24. Della Ventura, M.: Automatic tonal music composition using functional harmony. In: Agarwal, N., Xu, K., Osgood, N. (eds.) SBP 2015. LNCS, vol. 9021, pp. 290–295. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16268-3_32

    Chapter  Google Scholar 

  25. Martin, B., Hanna, P., Robine, M., Ferraro, P.: Structural analysis of harmonic features using string matching techniques ISMIR (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Della Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ventura, M.D. (2018). Computer System for Designing Musical Expressiveness in an Automatic Music Composition Process. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics