Skip to main content

Arsenic Exposure and Lifestyle-Related Diseases

  • Chapter
  • First Online:
Arsenic Contamination in Asia

Abstract

Arsenic is a naturally occurring toxic metalloid within the Earth’s crust. It is found primarily in drinking water and food. Chronic exposure to high levels of arsenic is associated with a wide range of human diseases including typical skin lesions (hyperpigmentation, hypopigmentation, and keratosis), cancer, diabetes, cardiovascular disease (CVD), neurocognitive outcomes, etc. In this chapter, we will introduce the evidence indicating association between arsenic exposure and increased risks of the lifestyle-related diseases [cancer, type 2 diabetes (T2D), and CVD], including epidemiological studies and animal studies. Current understanding of the mechanisms underlying these diseases and arsenic exposure will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutchinson J. On some examples of arsenic-keratosis of the skin and of arsenic-cancer. Trans Pathol Soc Lond. 1888;39:352–63.

    Google Scholar 

  2. IARC. Some inorganic and organometallic compounds. Lyon: IARC Press; 1973.

    Google Scholar 

  3. IARC. Arsenic and arsenic compounds. Lyon: IARC Press; 2012.

    Google Scholar 

  4. Nakadaira H, Endoh K, Katagiri M, Yamamoto M. Elevated mortality from lung cancer associated with arsenic exposure for a limited duration. J Occup Environ Med. 2002;44:291–9.

    Article  CAS  PubMed  Google Scholar 

  5. McLaughlin JK, Chen JQ, Dosemeci M, Chen RA, Rexing SH, Wu Z, et al. A nested case-control study of lung cancer among silica exposed workers in China. Br J Ind Med. 1992;49:167–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Qiao YL, Taylor PR, Yao SX, Erozan YS, Luo XC, Barrett MJ, et al. Risk factors and early detection of lung cancer in a cohort of Chinese tin miners. Ann Epidemiol. 1997;7:533–41.

    Article  CAS  PubMed  Google Scholar 

  7. Chen W, Chen J. Nested case-control study of lung cancer in four Chinese tin mines. Occup Environ Med. 2002;59:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen W, Bochmann F, Sun Y. Effects of work related confounders on the association between silica exposure and lung cancer: a nested case-control study among Chinese miners and pottery workers. Int Arch Occup Environ Health. 2007;80:320–6.

    Article  CAS  PubMed  Google Scholar 

  9. Chen CJ, Chuang YC, Lin TM, Wu HY. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res. 1985;45:5895–9.

    CAS  PubMed  Google Scholar 

  10. Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis (Dallas, TX). 1988;8:452–60.

    CAS  Google Scholar 

  11. Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989;130:1123–32.

    Article  CAS  PubMed  Google Scholar 

  12. Tsai SM, Wang TN, Ko YC. Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch Environ Health. 1999;54:186–93.

    Article  CAS  PubMed  Google Scholar 

  13. Mostafa MG, McDonald JC, Cherry NM. Lung cancer and exposure to arsenic in rural Bangladesh. Occup Environ Med. 2008;65:765–8.

    Article  CAS  PubMed  Google Scholar 

  14. Chiou HY, Hsueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, et al. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 1995;55:1296–300.

    CAS  PubMed  Google Scholar 

  15. Chen CJ, Chuang YC, You SL, Lin TM, Wu HY. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer. 1986;53:399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen CJ, Wang CJ. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res. 1990;50:5470–4.

    CAS  PubMed  Google Scholar 

  17. Chen CL, Hsu LI, Chiou HY, Hsueh YM, Chen SY, Wu MM, et al. Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. JAMA. 2004;292:2984–90.

    Article  CAS  PubMed  Google Scholar 

  18. Tsuda T, Babazono A, Yamamoto E, Kurumatani N, Mino Y, Ogawa T, et al. Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am J Epidemiol. 1995;141:198–209.

    Article  CAS  PubMed  Google Scholar 

  19. Chen K, Liao QL, Ma ZW, Jin Y, Hua M, Bi J, et al. Association of soil arsenic and nickel exposure with cancer mortality rates, a town-scale ecological study in Suzhou. Chin Environ Sci Pollut Res Int. 2015;22:5395–404.

    Article  CAS  Google Scholar 

  20. Chen CL, Chiou HY, Hsu LI, Hsueh YM, Wu MM, Chen CJ. Ingested arsenic, characteristics of well water consumption and risk of different histological types of lung cancer in northeastern Taiwan. Environ Res. 2010;110:455–62.

    Article  CAS  PubMed  Google Scholar 

  21. Kuo YC, Lo YS, Guo HR. Lung cancer associated with arsenic ingestion: cell-type specificity and dose response. Epidemiology (Cambridge, MA). 2017;28(Suppl 1):S106–12.

    Article  Google Scholar 

  22. Kesari VP, Kumar A, Khan PK. Genotoxic potential of arsenic at its reference dose. Ecotoxicol Environ Saf. 2012;80:126–31.

    Article  CAS  PubMed  Google Scholar 

  23. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968;40:453–63.

    CAS  PubMed  Google Scholar 

  24. Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA. The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect. 1999;107:727–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haque R, Mazumder DN, Samanta S, Ghosh N, Kalman D, Smith MM, et al. Arsenic in drinking water and skin lesions: dose-response data from West Bengal, India. Epidemiology (Cambridge, MA). 2003;14:174–82.

    Google Scholar 

  26. Guo X, Fujino Y, Kaneko S, Wu K, Xia Y, Yoshimura T. Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Mol Cell Biochem. 2001;222:137–40.

    Article  CAS  PubMed  Google Scholar 

  27. Hsueh YM, Chiou HY, Huang YL, Wu WL, Huang CC, Yang MH, et al. Serum beta-carotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev. 1997;6:589–96.

    CAS  PubMed  Google Scholar 

  28. Hsueh YM, Cheng GS, Wu MM, Yu HS, Kuo TL, Chen CJ. Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer. 1995;71:109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Ye F, Wang A, Wang D, Yang B, Zheng Q, et al. Chronic arsenic poisoning probably caused by arsenic-based pesticides: findings from an investigation study of a household. Int J Environ Res Public Health. 2016;13:113.

    Article  CAS  Google Scholar 

  30. Liu J, Zheng B, Aposhian HV, Zhou Y, Chen ML, Zhang A, et al. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Perspect. 2002;110:119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D, Chanda B. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst. 1995;120:917–24.

    Article  CAS  PubMed  Google Scholar 

  32. Milton AH, Rahman M. Respiratory effects and arsenic contaminated well water in Bangladesh. Int J Environ Health Res. 2002;12:175–9.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu LI, Chen GS, Lee CH, Yang TY, Chen YH, Wang YH, et al. Use of arsenic-induced palmoplantar hyperkeratosis and skin cancers to predict risk of subsequent internal malignancy. Am J Epidemiol. 2013;177:202–12.

    Article  PubMed  Google Scholar 

  34. Guo HR, Lipsitz SR, Hu H, Monson RR. Using ecological data to estimate a regression model for individual data: the association between arsenic in drinking water and incidence of skin cancer. Environ Res. 1998;79:82–93.

    Article  CAS  PubMed  Google Scholar 

  35. Guo HR, Yu HS, Hu H, Monson RR. Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, ROC). Cancer Causes Contr. 2001;12:909–16.

    Article  CAS  Google Scholar 

  36. Yu RC, Hsu KH, Chen CJ, Froines JR. Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:1259–62.

    CAS  PubMed  Google Scholar 

  37. Chen YC, Guo YL, Su HJ, Hsueh YM, Smith TJ, Ryan LM, et al. Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med. 2003;45:241–8.

    Article  CAS  PubMed  Google Scholar 

  38. Chiang HS, Guo HR, Hong CL, Lin SM, Lee EF. The incidence of bladder cancer in the black foot disease endemic area in Taiwan. Br J Urol. 1993;71:274–8.

    Article  CAS  PubMed  Google Scholar 

  39. Waalkes MP, Liu J, Diwan BA. Transplacental arsenic carcinogenesis in mice. Toxicol Appl Pharmacol. 2007;222:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chung CJ, Huang YL, Huang YK, Wu MM, Chen SY, Hsueh YM, et al. Urinary arsenic profiles and the risks of cancer mortality: a population-based 20-year follow-up study in arseniasis-endemic areas in Taiwan. Environ Res. 2013;122:25–30.

    Article  CAS  PubMed  Google Scholar 

  41. Nakadaira H, Serra I, Yamamoto M, Rogers R, Gutierrez D. Concentration of metals and other elements in the hair of Easter Islanders. Arch Environ Health. 2002;57:85–6.

    Article  CAS  PubMed  Google Scholar 

  42. Chen YC, Su HJ, Guo YL, Hsueh YM, Smith TJ, Ryan LM, et al. Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Contr. 2003;14:303–10.

    Article  Google Scholar 

  43. Chen YC, Su HJ, Guo YL, Houseman EA, Christiani DC. Interaction between environmental tobacco smoke and arsenic methylation ability on the risk of bladder cancer. Cancer Causes Contr. 2005;16:75–81.

    Article  Google Scholar 

  44. Steinmaus C, Bates MN, Yuan Y, Kalman D, Atallah R, Rey OA, et al. Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States. J Occup Environ Med. 2006;48:478–88.

    Article  CAS  PubMed  Google Scholar 

  45. Pu YS, Yang SM, Huang YK, Chung CJ, Huang SK, Chiu AW, et al. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol. 2007;218:99–106.

    Article  CAS  PubMed  Google Scholar 

  46. Huang YK, Huang YL, Hsueh YM, Yang MH, Wu MM, Chen SY, et al. Arsenic exposure, urinary arsenic speciation, and the incidence of urothelial carcinoma: a twelve-year follow-up study. Cancer Causes Contr. 2008;19:829–39.

    Article  Google Scholar 

  47. Chiou HY, Chiou ST, Hsu YH, Chou YL, Tseng CH, Wei ML, et al. Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol. 2001;153:411–8.

    Article  CAS  PubMed  Google Scholar 

  48. Guo HR, Chiang HS, Hu H, Lipsitz SR, Monson RR. Arsenic in drinking water and incidence of urinary cancers. Epidemiology (Cambridge, MA). 1997;8:545–50.

    Article  CAS  Google Scholar 

  49. Yang CY, Chang CC, Chiu HF. Does arsenic exposure increase the risk for prostate cancer? J Toxicol Environ Health A. 2008;71:1559–63.

    Article  CAS  PubMed  Google Scholar 

  50. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some drinking-water disinfectants and contaminants, including arsenic. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 84; 2004. p. 1–477.

    Google Scholar 

  51. Hayashi H, Kanisawa M, Yamanaka K, Ito T, Udaka N, Ohji H, et al. Dimethylarsinic acid, a main metabolite of inorganic arsenics, has tumorigenicity and progression effects in the pulmonary tumors of A/J mice. Cancer Lett. 1998;125:83–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kinoshita A, Wanibuchi H, Morimura K, Wei M, Nakae D, Arai T, et al. Carcinogenicity of dimethylarsinic acid in Ogg1-deficient mice. Cancer Sci. 2007;98:803–14.

    Article  CAS  PubMed  Google Scholar 

  53. Shen J, Liu J, Xie Y, Diwan BA, Waalkes MP. Fetal onset of aberrant gene expression relevant to pulmonary carcinogenesis in lung adenocarcinoma development induced by in utero arsenic exposure. Toxicol Sci. 2007;95:313–20.

    Article  CAS  PubMed  Google Scholar 

  54. Wanibuchi H, Yamamoto S, Chen H, Yoshida K, Endo G, Hori T, et al. Promoting effects of dimethylarsinic acid on N-butyl-N-(4-hydroxybutyl)nitrosamine-induced urinary bladder carcinogenesis in rats. Carcinogenesis. 1996;17:2435–9.

    Article  CAS  PubMed  Google Scholar 

  55. Yamamoto S, Konishi Y, Matsuda T, Murai T, Shibata MA, Matsui-Yuasa I, et al. Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after pretreatment with five carcinogens. Cancer Res. 1995;55:1271–6.

    CAS  PubMed  Google Scholar 

  56. Shirachi DY, Johansen MG, McGowan JP, Tu SH. Tumorigenic effect of sodium arsenite in rat kidney. Proc West Pharmacol Soc. 1983;26:413–5.

    CAS  PubMed  Google Scholar 

  57. Tokar EJ, Benbrahim-Tallaa L, Ward JM, Lunn R, Sams RL II, Waalkes MP. Cancer in experimental animals exposed to arsenic and arsenic compounds. Crit Rev Toxicol. 2010;40:912–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. IARC. Arsenic, metals, fibres, and dusts. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 100; 2012. p. 11–465.

    Google Scholar 

  59. NTP toxicology and carcinogenesis studies of gallium arsenide (CAS no. 1303-00-0) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser 2000;492:1–306.

    Google Scholar 

  60. Waalkes MP, Keefer LK, Diwan BA. Induction of proliferative lesions of the uterus, testes, and liver in swiss mice given repeated injections of sodium arsenate: possible estrogenic mode of action. Toxicol Appl Pharmacol. 2000;166:24–35.

    Article  CAS  PubMed  Google Scholar 

  61. Pershagen G, Bjorklund NE. On the pulmonary tumorigenicity of arsenic trisulfide and calcium arsenate in hamsters. Cancer Lett. 1985;27:99–104.

    Article  CAS  PubMed  Google Scholar 

  62. Yamamoto A, Hisanaga A, Ishinishi N. Tumorigenicity of inorganic arsenic compounds following intratracheal instillations to the lungs of hamsters. Int J Cancer. 1987;40:220–3.

    Article  CAS  PubMed  Google Scholar 

  63. Boekelheide K, Blumberg B, Chapin RE, Cote I, Graziano JH, Janesick A, et al. Predicting later-life outcomes of early-life exposures. Environ Health Perspect. 2012;120:1353–61.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Waalkes MP, Ward JM, Liu J, Diwan BA. Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol. 2003;186:7–17.

    Article  CAS  PubMed  Google Scholar 

  65. Waalkes MP, Ward JM, Diwan BA. Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis. 2004;25:133–41.

    Article  CAS  PubMed  Google Scholar 

  66. Nohara K, Tateishi Y, Suzuki T, Okamura K, Murai H, Takumi S, et al. Late-onset increases in oxidative stress and other tumorigenic activities and tumors with a Ha-ras mutation in the liver of adult male C3H mice gestationally exposed to arsenic. Toxicological sciences: an official journal of the Society of. Toxicology. 2012;129:293–304.

    Article  CAS  Google Scholar 

  67. Waalkes MP, Liu J, Ward JM, Powell DA, Diwan BA. Urogenital carcinogenesis in female CD1 mice induced by in utero arsenic exposure is exacerbated by postnatal diethylstilbestrol treatment. Cancer Res. 2006;66:1337–45.

    Article  CAS  PubMed  Google Scholar 

  68. Waalkes MP, Liu J, Ward JM, Diwan BA. Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen. Toxicol Appl Pharmacol. 2006;215:295–305.

    Article  CAS  PubMed  Google Scholar 

  69. Tokar EJ, Diwan BA, Waalkes MP. Renal, hepatic, pulmonary and adrenal tumors induced by prenatal inorganic arsenic followed by dimethylarsinic acid in adulthood in CD1 mice. Toxicol Lett. 2012;209:179–85.

    Article  CAS  PubMed  Google Scholar 

  70. Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J, Duran V, et al. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol Biomarkers Prev. 2014;23:1529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Garry MR, Santamaria AB, Williams AL, DeSesso JM. In utero arsenic exposure in mice and early life susceptibility to cancer. Regul Toxicol Pharmacol. 2015;73:378–90.

    Article  CAS  PubMed  Google Scholar 

  72. Gonzalez-Cortes T, Recio-Vega R, Lantz RC, Chau BT. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic. Toxicol Appl Pharmacol. 2017;329:140–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee CH, Wu SB, Hong CH, Chen GS, Wei YH, Yu HS. Involvement of mtDNA damage elicited by oxidative stress in the arsenical skin cancers. J Invest Dermatol. 2013;133:1890–900.

    Article  CAS  PubMed  Google Scholar 

  74. Banerjee N, Banerjee M, Ganguly S, Bandyopadhyay S, Das JK, Bandyopadhay A, et al. Arsenic-induced mitochondrial instability leading to programmed cell death in the exposed individuals. Toxicology. 2008;246:101–11.

    Article  CAS  PubMed  Google Scholar 

  75. Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res. 2003;290:234–45.

    Article  CAS  PubMed  Google Scholar 

  76. Mir SA, Pinto SM, Paul S, Raja R, Nanjappa V, Syed N, et al. SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure. Proteomics. 2017;17:28000977.

    Article  CAS  Google Scholar 

  77. Pi J, Diwan BA, Sun Y, Liu J, Qu W, He Y, et al. Arsenic-induced malignant transformation of human keratinocytes: involvement of Nrf2. Free Radic Biol Med. 2008;45:651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reichard JF, Schnekenburger M, Puga A. Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun. 2007;352:188–92.

    Article  CAS  PubMed  Google Scholar 

  79. Chervona Y, Hall MN, Arita A, Wu F, Sun H, Tseng HC, et al. Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol Biomarkers Prev. 2012;21:2252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pournara A, Kippler M, Holmlund T, Ceder R, Grafstrom R, Vahter M, et al. Arsenic alters global histone modifications in lymphocytes in vitro and in vivo. Cell Biol Toxicol. 2016;32:275–84.

    Article  CAS  PubMed  Google Scholar 

  81. Zhou X, Sun H, Ellen TP, Chen H, Costa M. Arsenite alters global histone H3 methylation. Carcinogenesis. 2008;29:1831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou X, Li Q, Arita A, Sun H, Costa M. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol. 2009;236:78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim HG, Kim DJ, Li S, Lee KY, Li X, Bode AM, et al. Polycomb (PcG) proteins, BMI1 and SUZ12, regulate arsenic-induced cell transformation. J Biol Chem. 2012;287:31920–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ray PD, Huang BW, Tsuji Y. Coordinated regulation of Nrf2 and histone H3 serine 10 phosphorylation in arsenite-activated transcription of the human heme oxygenase-1 gene. Biochim Biophys Acta. 2015;1849:1277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Srivastava S, Srivastava AK, Suprasanna P, D'Souza SF. Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot. 2013;64:303–15.

    Article  CAS  PubMed  Google Scholar 

  86. Xie H, Huang S, Martin S, Wise JP Sr. Arsenic is cytotoxic and genotoxic to primary human lung cells. Mutat Res Genet Toxicol Environ Mutagen. 2014;760:33–41.

    Article  CAS  PubMed  Google Scholar 

  87. Zanzoni F, Jung EG. Arsenic elevates the sister chromatid exchange (SCE) rate in human lymphocytes in vitro. Arch Dermatol Res. 1980;267:91–5.

    Article  CAS  PubMed  Google Scholar 

  88. Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiological evidence. Environ Health Perspect. 2006;114:641–8.

    Article  CAS  PubMed  Google Scholar 

  89. Steinmaus C, Yuan Y, Liaw J, Smith AH. Low-level population exposure to inorganic arsenic in the United States and diabetes mellitus: a reanalysis. Epidemiology (Cambridge, MA). 2009;20:807–15.

    Article  Google Scholar 

  90. Lai MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, et al. Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol. 1994;139:484–92.

    Article  CAS  PubMed  Google Scholar 

  91. Tseng CH, Tai TY, Chong CK, Tseng CP, Lai MS, Lin BJ, et al. Long-term arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ Health Perspect. 2000;108:847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tseng CH, Tseng CP, Chiou HY, Hsueh YM, Chong CK, Chen CJ. Epidemiologic evidence of diabetogenic effect of arsenic. Toxicol Lett. 2002;133:69–76.

    Article  CAS  PubMed  Google Scholar 

  93. Wang SL, Chiou JM, Chen CJ, Tseng CH, Chou WL, Wang CC, et al. Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environ Health Perspect. 2003;111:155–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chiu HF, Chang CC, Tsai SS, Yang CY. Does arsenic exposure increase the risk for diabetes mellitus? J Occup Environ Med. 2006;48:63–7.

    Article  CAS  PubMed  Google Scholar 

  95. Rahman M, Tondel M, Ahmad SA, Axelson O. Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol. 1998;148:198–203.

    Article  CAS  PubMed  Google Scholar 

  96. Rahman M, Tondel M, Chowdhury IA, Axelson O. Relations between exposure to arsenic, skin lesions, and glycosuria. Occup Environ Med. 1999;56:277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nabi AH, Rahman MM, Islam LN. Evaluation of biochemical changes in chronic arsenic poisoning among Bangladeshi patients. Int J Environ Res Public Health. 2005;2:385–93.

    Article  CAS  PubMed  Google Scholar 

  98. Diaz-Villasenor A, Cruz L, Cebrian A, Hernandez-Ramirez RU, Hiriart M, Garcia-Vargas G, et al. Arsenic exposure and calpain-10 polymorphisms impair the function of pancreatic beta-cells in humans: a pilot study of risk factors for T2DM. PLoS One. 2013;8:e51642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rahman M, Axelson O. Diabetes mellitus and arsenic exposure: a second look at case-control data from a Swedish copper smelter. Occup Environ Med. 1995;52:773–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rahman M, Wingren G, Axelson O. Diabetes mellitus among Swedish art glass workers—an effect of arsenic exposure? Scand J Work Environ Health. 1996;22:146–9.

    Article  CAS  PubMed  Google Scholar 

  101. Coronado-Gonzalez JA, Del Razo LM, Garcia-Vargas G, Sanmiguel-Salazar F, Escobedo-de la Pena J. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico. Environ Res. 2007;104:383–9.

    Article  CAS  PubMed  Google Scholar 

  102. Del Razo LM, Garcia-Vargas GG, Valenzuela OL, Castellanos EH, Sanchez-Pena LC, Currier JM, et al. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapan and Lagunera regions in Mexico. Environ Health. 2011;10:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Currier JM, Ishida MC, Gonzalez-Horta C, Sanchez-Ramirez B, Ballinas-Casarrubias L, Gutierrez-Torres DS, et al. Associations between arsenic species in exfoliated urothelial cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ Health Perspect. 2014;122:1088–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim Y, Lee BK. Association between urinary arsenic and diabetes mellitus in the Korean general population according to KNHANES 2008. Sci Total Environ. 2011;409:4054–62.

    Article  CAS  PubMed  Google Scholar 

  105. Meliker JR, Wahl RL, Cameron LL, Nriagu JO. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health. 2007;6:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA. 2008;300:814–22.

    Article  CAS  PubMed  Google Scholar 

  107. Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. Rejoinder: Arsenic exposure and prevalence of type 2 diabetes: updated findings from the National Health Nutrition and Examination Survey, 2003–2006. Epidemiology (Cambridge, MA). 2009;20:816–20. discussion e1–2

    Article  Google Scholar 

  108. Kim NH, Mason CC, Nelson RG, Afton SE, Essader AS, Medlin JE, et al. Arsenic exposure and incidence of type 2 diabetes in Southwestern American Indians. Am J Epidemiol. 2013;177:962–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Brauner EV, Nordsborg RB, Andersen ZJ, Tjonneland A, Loft S, Raaschou-Nielsen O. Long-term exposure to low-level arsenic in drinking water and diabetes incidence: a prospective study of the diet, cancer and health cohort. Environ Health Perspect. 2014;122:1059–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maull EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, et al. Evaluation of the association between arsenic and diabetes: a national toxicology program workshop review. Environ Health Perspect. 2012;120(12):1658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang W, Xie Z, Lin Y, Zhang D. Association of inorganic arsenic exposure with type 2 diabetes mellitus: a meta-analysis. J Epidemiol Community Health. 2014;68:176–84.

    Article  PubMed  Google Scholar 

  112. Kuo CC, Moon KA, Wang SL, Silbergeld E, Navas-Acien A. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect. 2017;125:087001.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hassan FI, Niaz K, Khan F, Maqbool F, Abdollahi M. The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI J. 2017;16:1132–43.

    PubMed  PubMed Central  Google Scholar 

  114. Halban PA, Polonsky KS, Bowden DW, Hawkins MA, Ling C, Mather KJ, et al. beta-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care. 2014;37:1751–8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med. 2006;41:177–84.

    Article  CAS  PubMed  Google Scholar 

  116. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

    Article  CAS  PubMed  Google Scholar 

  117. Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest. 2006;116:1802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kajimoto Y, Kaneto H. Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci. 2004;1011:168–76.

    Article  CAS  PubMed  Google Scholar 

  119. Robertson RP. Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr Opin Pharmacol. 2006;6:615–9.

    Article  CAS  PubMed  Google Scholar 

  120. Robertson RP. Antioxidant drugs for treating beta-cell oxidative stress in type 2 diabetes: glucose-centric versus insulin-centric therapy. Discov Med. 2010;9:132–7.

    PubMed  Google Scholar 

  121. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52:1–8.

    Article  CAS  PubMed  Google Scholar 

  122. Scott JA, King GL. Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci. 2004;1031:204–13.

    Article  CAS  PubMed  Google Scholar 

  123. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8.

    Article  CAS  PubMed  Google Scholar 

  124. Robertson RP, Harmon J, Tran PO, Poitout V. Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes. 2004;53(Suppl 1):S119–24.

    Article  CAS  PubMed  Google Scholar 

  125. Flora SJ, Bhadauria S, Pant SC, Dhaked RK. Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci. 2005;77:2324–37.

    Article  CAS  PubMed  Google Scholar 

  126. Das S, Santra A, Lahiri S, Guha Mazumder DN. Implications of oxidative stress and hepatic cytokine (TNF-alpha and IL-6) response in the pathogenesis of hepatic collagenesis in chronic arsenic toxicity. Toxicol Appl Pharmacol. 2005;204:18–26.

    Article  CAS  PubMed  Google Scholar 

  127. Kumagai Y, Pi J. Molecular basis for arsenic-induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction. Toxicol Appl Pharmacol. 2004;198:450–7.

    Article  CAS  PubMed  Google Scholar 

  128. Kitchin KT, Ahmad S. Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett. 2003;137:3–13.

    Article  CAS  PubMed  Google Scholar 

  129. Pi J, He Y, Bortner C, Huang J, Liu J, Zhou T, et al. Low level, long-term inorganic arsenite exposure causes generalized resistance to apoptosis in cultured human keratinocytes: potential role in skin co-carcinogenesis. Int J Cancer. 2005;116:20–6.

    Article  CAS  PubMed  Google Scholar 

  130. Zhao R, Hou Y, Xue P, Woods CG, Fu J, Feng B, et al. Long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes. Environ Health Perspect. 2011;119:56–62.

    Article  CAS  PubMed  Google Scholar 

  131. Zhao R, Hou Y, Zhang Q, Woods CG, Xue P, Fu J, et al. Cross-regulations among NRFs and KEAP1 and effects of their silencing on arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. Environ Health Perspect. 2012;120:583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yang B, Fu J, Zheng H, Xue P, Yarborough K, Woods CG, et al. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic beta-cells vulnerable to arsenic-induced cell damage. Toxicol Appl Pharmacol. 2012;264:315–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pi J, Horiguchi S, Sun Y, Nikaido M, Shimojo N, Hayashi T, et al. A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radic Biol Med. 2003;35:102–13.

    Article  CAS  PubMed  Google Scholar 

  134. Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, et al. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect. 2002;110:331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Aposhian HV. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol. 1997;37:397–419.

    Article  CAS  PubMed  Google Scholar 

  136. Hayakawa T, Kobayashi Y, Cui X, Hirano S. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol. 2005;79:183–91.

    Article  CAS  PubMed  Google Scholar 

  137. Lin S, Del Razo LM, Styblo M, Wang C, Cullen WR, Thomas DJ. Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes. Chem Res Toxicol. 2001;14:305–11.

    Article  CAS  PubMed  Google Scholar 

  138. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000;74:289–99.

    Article  CAS  PubMed  Google Scholar 

  139. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12:1161–208.

    Article  CAS  PubMed  Google Scholar 

  140. Pi JB, Bai YS, Daniel KW, Liu DX, Lyght O, Edelstein D, et al. Persistent oxidative stress due to absence of uncoupling protein 2 associated with impaired pancreatic beta-cell function. Endocrinology. 2009;150:3040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pi J, Bai Y, Reece JM, Williams J, Liu D, Freeman ML, et al. Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic Biol Med. 2007;42:1797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pi J, Bai Y, Zhang Q, Wong V, Floering LM, Daniel K, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56:1783–91.

    Article  CAS  PubMed  Google Scholar 

  143. Diaz-Villasenor A, Burns AL, Salazar AM, Sordo M, Hiriart M, Cebrian ME, et al. Arsenite reduces insulin secretion in rat pancreatic beta-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25. Toxicol Appl Pharmacol. 2008;231:291–9.

    Article  CAS  PubMed  Google Scholar 

  144. Diaz-Villasenor A, Sanchez-Soto MC, Cebrian ME, Ostrosky-Wegman P, Hiriart M. Sodium arsenite impairs insulin secretion and transcription in pancreatic beta-cells. Toxicol Appl Pharmacol. 2006;214:30–4.

    Article  CAS  PubMed  Google Scholar 

  145. Fu J, Woods CG, Yehuda-Shnaidman E, Zhang Q, Wong V, Collins S, et al. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perspect. 2010;118:864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Douillet C, Currier J, Saunders J, Bodnar WM, Matousek T, Styblo M. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol. 2013;267:11–5.

    Article  CAS  PubMed  Google Scholar 

  147. Liu S, Guo X, Wu B, Yu H, Zhang X, Li M. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. 2014;4:6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yen CC, Lu FJ, Huang CF, Chen WK, Liu SH, Lin-Shiau SY. The diabetogenic effects of the combination of humic acid and arsenic: in vitro and in vivo studies. Toxicol Lett. 2007;172:91–105.

    Article  CAS  PubMed  Google Scholar 

  149. Cobo JM, Castineira M. Oxidative stress, mitochondrial respiration, and glycemic control: clues from chronic supplementation with Cr3+ or As3+ to male Wistar rats. Nutrition. 1997;13:965–70.

    Article  CAS  PubMed  Google Scholar 

  150. Izquierdo-Vega JA, Soto CA, Sanchez-Pena LC, De Vizcaya-Ruiz A, Del Razo LM. Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett. 2006;160:135–42.

    Article  CAS  PubMed  Google Scholar 

  151. Majumdar S, Mukherjee S, Maiti A, Karmakar S, Das AS, Mukherjee M, et al. Folic acid or combination of folic acid and vitamin B(12) prevents short-term arsenic trioxide-induced systemic and mitochondrial dysfunction and DNA damage. Environ Toxicol. 2009;24:377–87.

    Article  CAS  PubMed  Google Scholar 

  152. Lu TH, Su CC, Chen YW, Yang CY, Wu CC, Hung DZ, et al. Arsenic induces pancreatic beta-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett. 2011;201:15–26.

    Article  CAS  PubMed  Google Scholar 

  153. Patel HV, Kalia K. Role of hepatic and pancreatic oxidative stress in arsenic induced diabetic condition in Wistar rats. J Environ Biol. 2013;34:231–6.

    PubMed  Google Scholar 

  154. Zhu XX, Yao XF, Jiang LP, Geng CY, Zhong LF, Yang G, et al. Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic beta-cells. Food Chem Toxicol. 2014;70:144–50.

    Article  CAS  PubMed  Google Scholar 

  155. Davila-Esqueda ME, Morales JM, Jimenez-Capdeville ME, De la Cruz E, Falcon-Escobedo R, Chi-Ahumada E, et al. Low-level subchronic arsenic exposure from prenatal developmental stages to adult life results in an impaired glucose homeostasis. Exp Clin Endocrinol Diabet. 2011;119:613–7.

    Article  CAS  Google Scholar 

  156. Mukherjee S, Das D, Mukherjee M, Das AS, Mitra C. Synergistic effect of folic acid and vitamin B12 in ameliorating arsenic-induced oxidative damage in pancreatic tissue of rat. J Nutr Biochem. 2006;17:319–27.

    Article  CAS  PubMed  Google Scholar 

  157. Boquist L, Boquist S, Ericsson I. Structural beta-cell changes and transient hyperglycemia in mice treated with compounds inducing inhibited citric acid cycle enzyme activity. Diabetes. 1988;37:89–98.

    Article  CAS  PubMed  Google Scholar 

  158. Ashrafihelan J, Amoli JS, Alamdari M, Esfahani TA, Mozafari M, Nourian AR, et al. Arsenic toxicosis in sheep: the first report from Iran. Interdiscip Toxicol. 2013;6:93–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zhang J, Mu X, Xu W, Martin FL, Alamdar A, Liu L, et al. Exposure to arsenic via drinking water induces 5-hydroxymethylcytosine alteration in rat. Sci Total Environ. 2014;497-498:618–25.

    Article  CAS  PubMed  Google Scholar 

  160. Fu J, Zheng H, Wang H, Yang B, Zhao R, Lu C, et al. Protective role of nuclear factor E2-related factor 2 against acute oxidative stress-induced pancreatic beta-cell damage. Oxidative Med Cell Longev. 2015;2015:639191.

    Article  Google Scholar 

  161. Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, et al. Arsenic exposure and glucose intolerance/insulin resistance in estrogen-deficient female mice. Environ Health Perspect. 2015;123(11):1138–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ortsater H, Liss P, Akerman KE, Bergsten P. Contribution of glycolytic and mitochondrial pathways in glucose-induced changes in islet respiration and insulin secretion. Pflugers Archiv. 2002;444:506–12.

    Article  PubMed  CAS  Google Scholar 

  163. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96.

    Article  CAS  PubMed  Google Scholar 

  164. Iozzo P. Viewpoints on the way to the consensus session: where does insulin resistance start? The adipose tissue. Diabetes Care. 2009;32(Suppl 2):S168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42:987–1000.

    Article  CAS  PubMed  Google Scholar 

  167. Das UN, Repossi G, Dain A, Eynard AR. Is insulin resistance a disorder of the brain? Front Biosci. 2011;16:1–12.

    Article  CAS  Google Scholar 

  168. Paul DS, Hernandez-Zavala A, Walton FS, Adair BM, Dedina J, Matousek T, et al. Examination of the effects of arsenic on glucose homeostasis in cell culture and animal studies: development of a mouse model for arsenic-induced diabetes. Toxicol Appl Pharmacol. 2007;222:305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xue P, Hou Y, Zhang Q, Woods CG, Yarborough K, Liu H, et al. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem Biophys Res Commun. 2011;407:360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Walton FS, Harmon AW, Paul DS, Drobna Z, Patel YM, Styblo M. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Appl Pharmacol. 2004;198:424–33.

    Article  CAS  PubMed  Google Scholar 

  171. Paul DS, Harmon AW, Devesa V, Thomas DJ, Styblo M. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous Acid. Environ Health Perspect. 2007;115:734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang C, Fennel EMJ, Douillet C, Styblo M. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes. Arch Toxicol. 2017;91:3811–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ditzel EJ, Nguyen T, Parker P, Camenisch TD. Effects of arsenite exposure during fetal development on energy metabolism and susceptibility to diet-induced fatty liver disease in male mice. Environ Health Perspect. 2016;124:201–9.

    Article  CAS  PubMed  Google Scholar 

  174. Saadeh M, Ferrante TC, Kane A, Shirihai O, Corkey BE, Deeney JT. Reactive oxygen species stimulate insulin secretion in rat pancreatic islets: studies using mono-oleoyl-glycerol. PLoS One. 2012;7:e30200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Leloup C, Tourrel-Cuzin C, Magnan C, Karaca M, Castel J, Carneiro L, et al. Mitochondrial reactive oxygen species are obligatory signals for glucose-induced insulin secretion. Diabetes. 2009;58:673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Garciafigueroa DY, Klei LR, Ambrosio F, Barchowsky A. Arsenic-stimulated lipolysis and adipose remodeling is mediated by G-protein-coupled receptors. Toxicol Sci. 2013;134:335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Samadder A, Das S, Das J, Khuda-Bukhsh AR. Relative efficacies of insulin and poly (lactic-co-glycolic) acid encapsulated nano-insulin in modulating certain significant biomarkers in arsenic intoxicated L6 cells. Colloids Surf B Biointerfaces. 2013;109:10–9.

    Article  CAS  PubMed  Google Scholar 

  178. Steffens AA, Hong GM, Bain LJ. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin. Toxicol Appl Pharmacol. 2011;250:154–61.

    Article  CAS  PubMed  Google Scholar 

  179. Hong GM, Bain LJ. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1. Toxicol Appl Pharmacol. 2012;260:250–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yen YP, Tsai KS, Chen YW, Huang CF, Yang RS, Liu SH. Arsenic inhibits myogenic differentiation and muscle regeneration. Environ Health Perspect. 2010;118:949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Padmaja Divya S, Pratheeshkumar P, Son YO, Vinod Roy R, Andrew Hitron J, Kim D, et al. Arsenic induces insulin resistance in mouse adipocytes and myotubes via oxidative stress-regulated mitochondrial Sirt3-FOXO3a signaling pathway. Toxicol Sci. 2015;146:290–300.

    Article  PubMed  Google Scholar 

  182. Wang C, Hsieh CH, Wu WG. Phenylarsine oxide inhibits insulin-dependent glucose transport activity in rat soleus muscles. Biochem Biophys Res Commun. 1991;176:201–6.

    Article  CAS  PubMed  Google Scholar 

  183. Hou Y, Xue P, Woods CG, Wang X, Fu J, Yarborough K, et al. Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response. Environ Health Perspect. 2013;121:237–43.

    Article  PubMed  CAS  Google Scholar 

  184. Wang ZX, Jiang CS, Liu L, Wang XH, Jin HJ, Wu Q, et al. The role of Akt on arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation. Cell Res. 2005;15:379–86.

    Article  CAS  PubMed  Google Scholar 

  185. Klei LR, Garciafigueroa DY, Barchowsky A. Arsenic activates endothelin-1 Gi protein-coupled receptor signaling to inhibit stem cell differentiation in adipogenesis. Toxicol Sci. 2013;131:512–20.

    Article  CAS  PubMed  Google Scholar 

  186. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006;114:1293–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Waalkes MP, Liu J, Germolec DR, Trempus CS, Cannon RE, Tokar EJ, et al. Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res. 2008;68:8278–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ Health Perspect. 2012;120(11):1527–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120:779–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121:295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med. 2013;159:649–59.

    PubMed  PubMed Central  Google Scholar 

  192. Chen Y, Wu F, Liu M, Parvez F, Slavkovich V, Eunus M, et al. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ Health Perspect. 2013;121:832–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Chen Y, Wu F, Graziano JH, Parvez F, Liu M, Paul RR, et al. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol. 2013;178:372–81.

    Article  PubMed  PubMed Central  Google Scholar 

  194. James KA, Byers T, Hokanson JE, Meliker JR, Zerbe GO, Marshall JA. Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents. Environ Health Perspect. 2015;123:128–34.

    Article  CAS  PubMed  Google Scholar 

  195. Moon KA, Oberoi S, Barchowsky A, Chen Y, Guallar E, Nachman KE, et al. A dose-response meta-analysis of chronic arsenic exposure and incident cardiovascular disease. Int J Epidemiol. 2017;46:1924–39.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tsuji JS, Perez V, Garry MR, Alexander DD. Association of low-level arsenic exposure in drinking water with cardiovascular disease: a systematic review and risk assessment. Toxicology. 2014;323:78–94.

    Article  CAS  PubMed  Google Scholar 

  197. Farzan SF, Chen Y, Rees JR, Zens MS, Karagas MR. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study. Toxicol Appl Pharmacol. 2015;287:93–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rahman M, Sohel N, Yunus M, Chowdhury ME, Hore SK, Zaman K, et al. A prospective cohort study of stroke mortality and arsenic in drinking water in Bangladeshi adults. BMC Public Health. 2014;14:174.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Liao YT, Chen CJ, Li WF, Hsu LI, Tsai LY, Huang YL, et al. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan. Toxicol Appl Pharmacol. 2012;262:232–7.

    Article  CAS  PubMed  Google Scholar 

  200. Wade TJ, Xia Y, Wu K, Li Y, Ning Z, Le XC, et al. Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. Int J Environ Res Public Health. 2009;6:1107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sohel N, Persson LA, Rahman M, Streatfield PK, Yunus M, Ekstrom EC, et al. Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology (Cambridge, MA). 2009;20:824–30.

    Article  Google Scholar 

  202. Wu MM, Chiou HY, Chen CL, Wang YH, Hsieh YC, Lien LM, et al. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan. Toxicol Appl Pharmacol. 2010;248:226–33.

    Article  CAS  PubMed  Google Scholar 

  203. Wu MM, Chiou HY, Hsueh YM, Hong CT, Su CL, Chang SF, et al. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol Appl Pharmacol. 2006;216:168–75.

    Article  CAS  PubMed  Google Scholar 

  204. Wang YH, Wu MM, Hong CT, Lien LM, Hsieh YC, Tseng HP, et al. Effects of arsenic exposure and genetic polymorphisms of p53, glutathione S-transferase M1, T1, and P1 on the risk of carotid atherosclerosis in Taiwan. Atherosclerosis. 2007;192:305–12.

    Article  CAS  PubMed  Google Scholar 

  205. Hsieh YC, Hsieh FI, Lien LM, Chou YL, Chiou HY, Chen CJ. Risk of carotid atherosclerosis associated with genetic polymorphisms of apolipoprotein E and inflammatory genes among arsenic exposed residents in Taiwan. Toxicol Appl Pharmacol. 2008;227:1–7.

    Article  CAS  PubMed  Google Scholar 

  206. Chen Y, Hakim ME, Parvez F, Islam T, Rahman AM, Ahsan H. Arsenic exposure from drinking-water and carotid artery intima-medial thickness in healthy young adults in Bangladesh. J Health Popul Nutr. 2006;24:253–7.

    CAS  PubMed  Google Scholar 

  207. Yildiz A, Karaca M, Biceroglu S, Nalbantcilar MT, Coskun U, Arik F, et al. Effect of chronic arsenic exposure from drinking waters on the QT interval and transmural dispersion of repolarization. J Int Med Res. 2008;36:471–8.

    Article  CAS  PubMed  Google Scholar 

  208. Wade TJ, Xia Y, Mumford J, Wu K, Le XC, Sams E, et al. Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study. Environ Health. 2015;14:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Gong G, O'Bryant SE. Low-level arsenic exposure, AS3MT gene polymorphism and cardiovascular diseases in rural Texas counties. Environ Res. 2012;113:52–7.

    Article  CAS  PubMed  Google Scholar 

  210. Zierold KM, Knobeloch L, Anderson H. Prevalence of chronic diseases in adults exposed to arsenic-contaminated drinking water. Am J Public Health. 2004;94:1936–7.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Guo JX, Hu L, Yand PZ, Tanabe K, Miyatalre M, Chen Y. Chronic arsenic poisoning in drinking water in Inner Mongolia and its associated health effects. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42:1853–8.

    Article  CAS  PubMed  Google Scholar 

  212. Kwok RK, Mendola P, Liu ZY, Savitz DA, Heiss G, Ling HL, et al. Drinking water arsenic exposure and blood pressure in healthy women of reproductive age in Inner Mongolia, China. Toxicol Appl Pharmacol. 2007;222:337–43.

    Article  CAS  PubMed  Google Scholar 

  213. Dastgiri S, Mosaferi M, Fizi MA, Olfati N, Zolali S, Pouladi N, et al. Arsenic exposure, dermatological lesions, hypertension, and chromosomal abnormalities among people in a rural community of northwest Iran. J Health Popul Nutr. 2010;28:14–22.

    PubMed  PubMed Central  Google Scholar 

  214. Li Y, Wang D, Li X, Zheng Q, Sun G. A potential synergy between incomplete arsenic methylation capacity and demographic characteristics on the risk of hypertension: findings from a cross-sectional study in an arsenic-endemic area of inner Mongolia, China. Int J Environ Res Public Health. 2015;12:3615–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, Paul SK, et al. Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health. 2017;16:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Mahram M, Shahsavari D, Oveisi S, Jalilolghadr S. Comparison of hypertension and diabetes mellitus prevalence in areas with and without water arsenic contamination. J Res Med Sci. 2013;18:408–12.

    PubMed  PubMed Central  Google Scholar 

  217. Li X, Li B, Xi S, Zheng Q, Wang D, Sun G. Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health. 2013;12:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Yu Y, Guo Y, Zhang J, Xie J, Zhu Y, Yan J, et al. A perspective of chronic low exposure of arsenic on non-working women: Risk of hypertension. Sci Total Environ. 2017;580:69–73.

    Article  CAS  PubMed  Google Scholar 

  219. Jones MR, Tellez-Plaza M, Sharrett AR, Guallar E, Navas-Acien A. Urine arsenic and hypertension in US adults: the 2003-2008 National Health and Nutrition Examination Survey. Epidemiology (Cambridge, MA). 2011;22:153–61.

    Article  Google Scholar 

  220. Chen CJ. Health hazards and mitigation of chronic poisoning from arsenic in drinking water: Taiwan experiences. Rev Environ Health. 2014;29:13–9.

    Article  CAS  PubMed  Google Scholar 

  221. Newman JD, Navas-Acien A, Kuo CC, Guallar E, Howard BV, Fabsitz RR, et al. Peripheral arterial disease and its association with arsenic exposure and metabolism in the strong heart study. Am J Epidemiol. 2016;184:806–17.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Tseng CH, Huang YK, Huang YL, Chung CJ, Yang MH, Chen CJ, et al. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol. 2005;206:299–308.

    Article  CAS  PubMed  Google Scholar 

  223. Khan MH, Sarkar S, Khan N, Sarwar AF, Ahmad SA. Assessment of low ABSPI among arsenic exposed and non-exposed populations: a pilot study. Bangladesh Med Res Counc Bull. 2010;36:23–6.

    Article  PubMed  Google Scholar 

  224. Bunderson M, Brooks DM, Walker DL, Rosenfeld ME, Coffin JD, Beall HD. Arsenic exposure exacerbates atherosclerotic plaque formation and increases nitrotyrosine and leukotriene biosynthesis. Toxicol Appl Pharmacol. 2004;201:32–9.

    Article  CAS  PubMed  Google Scholar 

  225. Srivastava S, Vladykovskaya EN, Haberzettl P, Sithu SD, D'Souza SE, States JC. Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE−/− mice. Toxicol Appl Pharmacol. 2009;241:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Lemaire M, Lemarie CA, Molina MF, Schiffrin EL, Lehoux S, Mann KK. Exposure to moderate arsenic concentrations increases atherosclerosis in ApoE−/− mouse model. Toxicol Sci. 2011;122:211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Simeonova PP, Hulderman T, Harki D, Luster MI. Arsenic exposure accelerates atherogenesis in apolipoprotein E(−/−) mice. Environ Health Perspect. 2003;111:1744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Lemaire M, Negro Silva LF, Lemarie CA, Bolt AM, Flores Molina M, Krohn RM, et al. Arsenic exposure increases monocyte adhesion to the vascular endothelium, a pro-atherogenic mechanism. PLoS One. 2015;10:e0136592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Negro Silva LF, Lemaire M, Lemarie CA, Plourde D, Bolt AM, Chiavatti C, et al. Effects of inorganic arsenic, methylated arsenicals, and arsenobetaine on atherosclerosis in the mouse model and the role of As3mt-mediated methylation. J Biochem Mol Toxicol. 2017;125:077001.

    Google Scholar 

  230. Krohn RM, Lemaire M, Negro Silva LF, Lemarie C, Bolt A, Mann KK, et al. High-selenium lentil diet protects against arsenic-induced atherosclerosis in a mouse model. J Nutr Biochem. 2016;27:9–15.

    Article  CAS  PubMed  Google Scholar 

  231. Sarath TS, Waghe P, Gupta P, Choudhury S, Kannan K, Pillai AH, et al. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicol Appl Pharmacol. 2014;280:443–54.

    Article  CAS  PubMed  Google Scholar 

  232. Waghe P, Sarath TS, Gupta P, Kandasamy K, Choudhury S, Kutty HS, et al. Arsenic causes aortic dysfunction and systemic hypertension in rats: augmentation of angiotensin II signaling. Chem Biol Interact. 2015;237:104–14.

    Article  CAS  PubMed  Google Scholar 

  233. Cifuentes F, Palacios J, Nwokocha CR. Synchronization in the heart rate and the vasomotion in rat aorta: effect of arsenic trioxide. Cardiovasc Toxicol. 2016;16:79–88.

    Article  CAS  PubMed  Google Scholar 

  234. Khuman MW, Harikumar SK, Sadam A, Kesavan M, Susanth VS, Parida S, et al. Candesartan ameliorates arsenic-induced hypertensive vascular remodeling by regularizing angiotensin II and TGF-beta signaling in rats. Toxicology. 2016;374:29–41.

    Article  CAS  PubMed  Google Scholar 

  235. Edwards DH, Li Y, Ellinsworth DC, Griffith TM. The effect of inorganic arsenic on endothelium-dependent relaxation: role of NADPH oxidase and hydrogen peroxide. Toxicology. 2013;306:50–8.

    Article  CAS  PubMed  Google Scholar 

  236. Lee MY, Jung BI, Chung SM, Bae ON, Lee JY, Park JD, et al. Arsenic-induced dysfunction in relaxation of blood vessels. Environ Health Perspect. 2003;111:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Soucy NV, Mayka D, Klei LR, Nemec AA, Bauer JA, Barchowsky A. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc Toxicol. 2005;5:29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kesavan M, Sarath TS, Kannan K, Suresh S, Gupta P, Vijayakaran K, et al. Atorvastatin restores arsenic-induced vascular dysfunction in rats: modulation of nitric oxide signaling and inflammatory mediators. Toxicol Appl Pharmacol. 2014;280:107–16.

    Article  CAS  PubMed  Google Scholar 

  239. Zhang Y, Wu X, Li Y, Zhang H, Li Z, Zhang Y, et al. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis. PLoS One. 2016;6:33787.

    CAS  Google Scholar 

  240. Li S, Wang Y, Zhao H, He Y, Li J, Jiang G, et al. NF-kappaB-mediated inflammation correlates with calcium overload under arsenic trioxide-induced myocardial damage in Gallus gallus. Chemosphere. 2017;185:618–27.

    Article  CAS  PubMed  Google Scholar 

  241. Oyagbemi AA, Omobowale TA. Sodium arsenite-induced cardiovascular and renal dysfunction in rat via oxidative stress and protein kinase B (Akt/PKB) signaling pathway. Redox Rep. 2017;22:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ellinsworth DC. Arsenic, reactive oxygen, and endothelial dysfunction. J Pharmacol Exp Ther. 2015;353:458–64.

    Article  CAS  PubMed  Google Scholar 

  243. Hossain E, Ota A, Karnan S, Damdindorj L, Takahashi M, Konishi Y, et al. Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells. Toxicol Appl Pharmacol. 2013;273:651–8.

    Article  CAS  PubMed  Google Scholar 

  244. Weaver H, Shukla N, Ellinsworth D, Jeremy JY. Oxidative stress and vein graft failure: a focus on NADH oxidase, nitric oxide and eicosanoids. Curr Opin Pharmacol. 2012;12:160–5.

    Article  CAS  PubMed  Google Scholar 

  245. Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999;27:1405–12.

    Article  CAS  PubMed  Google Scholar 

  246. Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE. Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med. 1996;21:783–90.

    Article  CAS  PubMed  Google Scholar 

  247. Alamolhodaei NS, Shirani K, Karimi G. Arsenic cardiotoxicity: an overview. Environ Toxicol Pharmacol. 2015;40:1005–14.

    Article  CAS  PubMed  Google Scholar 

  248. Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12:627–42.

    Article  CAS  PubMed  Google Scholar 

  249. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM. Arsenic and human health effects: a review. Environ Toxicol Pharmacol. 2015;40:828–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingbo Pi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, Y., Fu, J., Wang, H., Hou, Y., Pi, J. (2019). Arsenic Exposure and Lifestyle-Related Diseases. In: Yamauchi, H., Sun, G. (eds) Arsenic Contamination in Asia. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2565-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2565-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2564-9

  • Online ISBN: 978-981-13-2565-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics