Skip to main content

Affine Calibration Transfer Model

  • Chapter
  • First Online:
Electronic Nose: Algorithmic Challenges

Abstract

Reproducibility of E-nose is an important issue. An inherent problem of MOS sensors is that the signal is different when exposed to the same surroundings. This is caused by the discreteness of MOS sensors. Therefore, this chapter shows how to solve this challenge of discreteness issue in E-nose. In terms of the homogeneous linearity between multi-sensors systems, an on-line calibration transfer model based on global affine transformation (GAT) and Kennard–Stone sequential (KSS) algorithm is presented and evaluated in this chapter. GAT is achieved in terms of one single sensor by a robust weighted least square (RWLS) algorithm, and KSS is studied for representative transfer sample subset selection from a large sample space. This chapter consists of two aspects: calibration step (for responses of sensors) and prediction step (for gas concentration). Prediction is developed to evaluate the performance of calibration transfer. In prediction step, three artificial neural networks for concentration prediction of three analytes were trained based on back-propagation algorithm. Experimental results show that the reproducibility can be significantly improved by using GAT method, and the discreteness problem is solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.J. Wolfrum, R.M. Meglen, D. Peterson, J. Sluiter, Calibration transfer among sensor arrays designed for monitoring volatile organic compounds in indoor air quality. IEEE Sens. J. 6, 1638–1643 (2006)

    Article  Google Scholar 

  2. E. Bouveresse, D.L. Massart, Standardisation of near-infrared spectrometric instruments: a review. Vib. Spectrosc. 11, 3–15 (1996)

    Article  Google Scholar 

  3. E. Bouveresse, C. Hartmann, D.L. Massart, Standardization of near-infrared spectrometric instruments. Anal. Chem. 68(6), 982–990 (1996)

    Article  Google Scholar 

  4. J. Sjoblom, O. Svensson, M. Josefson, H. Kullberg, S. Wold, An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometr. Intell. Lab. Syst. 44, 229–244 (1998)

    Article  Google Scholar 

  5. B. Walczak, E. Bouveresse, D.L. Massart, Standardization of near-infrared spectra in the wavelet domain. Chemometr. Intell. Lab. Syst. 36, 41–51 (1997)

    Article  Google Scholar 

  6. K.S. Park, Y.H. Ko, H. Lee, C.H. Jun, H. Chung, M.S. Ku, Near-infrared spectral data transfer using independent standardization samples: a case study on the trans-alkylation process. Chem. Intel. Lab. Syst. 55, 53–65 (2001)

    Article  Google Scholar 

  7. C. Dinatale, F.A. Davide, A. Damico, W. Gopel, U. Weimar, Sensor array calibration with enhanced neural networks. Sens. Actuators B: Chem. 18, 654–657 (1994)

    Google Scholar 

  8. S. Osowski et al., Neural methods of calibration of sensors for gas measurements and aroma identification system. J. Sens. Stud. 23(4), 533–557 (2008)

    Article  Google Scholar 

  9. P. Laurent, O.B. Jacques, T. Raphael, Data transferability between two MS-based electronic noses using processed cheeses and evaporated milk as reference materials. Eur. Food Res. Technol. 214, 160–162 (2002)

    Article  Google Scholar 

  10. F.C. Tian, S.X. Yang, K. Dong, Circuit and noise analysis of odorant gas sensors in an E-nose. Sensors 5, 85–96 (2005)

    Article  Google Scholar 

  11. X.T. Xu, F.C. Tian, S.X. Yang, Q. Li, J. Yan, J.W. Ma, A solid trap and thermal desorption system with application to a medical electronic nose. Sensors 8, 6885–6898 (2008)

    Article  Google Scholar 

  12. F.C. Tian, X.T. Xu, Y. Shen, J. Yan, Q.H. He, J.W. Ma, T. Liu, Detection of wound pathogen by an intelligent electronic nose. Sens. Mater. 21, 155–166 (2009)

    Google Scholar 

  13. L.H. Zhang, W.L. Xu, C. Chang, Genetic algorithm for affine point pattern matching. Pattern Recogn. Lett. 24, 9–19 (2003)

    Article  Google Scholar 

  14. J. Heikkilä, Pattern matching with affine moment descriptors. Pattern Recogn. 37, 1825–1834 (2004)

    Article  Google Scholar 

  15. S. Haykin, Neual Networks, a Comprehensive Foundation (Macmillan, New York, NY, 2002)

    Google Scholar 

  16. D. Gao, M. Chen, J. Yan, Simultaneous estimation of classes and concentrations of odors by an electronic nose using combinative and modular multilayer perceptrons. Sens. Actuators B 107, 773–781 (2005)

    Article  Google Scholar 

  17. B. Yea, T. Osaki, K. Sugahara, R. Konishi, The concentration estimation of inflammable gases with a semiconductor gas sensor utilizing neural networks and fuzzy inference. Sens. Actuators B 41, 121–129 (1997)

    Article  Google Scholar 

  18. S. De Vito, A. Castaldo, F. Loffredo, E. Massera, T. Polichetti, I. Nasti, P. Vacca, L. Quercia, G. Di Francia, Gas concentration estimation in ternary mixtures with room temperature operating sensor array using tapped delay architectures. Sens. Actuators B 124, 309–316 (2007)

    Google Scholar 

  19. M. Pardo, G. Sberveglieri, Remarks on the use of multilayer perceptrons for the analysis of chemical sensor array data. Sens. J., IEEE. 4(3), 355–363 (2004)

    Article  Google Scholar 

  20. D.L.A. Fernandes, M. Teresa, S.R. Gomes, Development of an electronic nose to identify and quantify volatile hazardous compounds. Talanta 77, 77–83 (2008)

    Article  Google Scholar 

  21. Š. Obdržálek, J. Matas, Object recognition using local affine frames on distinguished regions, in BMVC (2002), pp. 113–122

    Google Scholar 

  22. R.M. Heiberger, R.A. Becker, Design of an S function for robust regression using iteratively reweighted least squares. J. Comput. Graphical Stat. 1, 181–196 (1992)

    Google Scholar 

  23. F. Sales, M.P. Callao, F.X. Rius, Multivariate standardization for correcting the ionic strength variation on potentiometric sensor arrays. Analyst 125, 883–888 (2000)

    Article  Google Scholar 

  24. Y.H. Huang, D. Jiang, D.F. Zhuang, J.Y. Fu, Evaluation of hyperspectral indices for chlorophyll-a concentration estimation in Tangxun Lake (Wuhan, China). Int. J. Environ. Res. Public Health. 7, 2437–2451 (2010)

    Article  Google Scholar 

  25. L. Zhang, F. Tian, C. Kadri, B. Xiao, H. Li, L. Pan, H. Zhou, On-line sensor calibration transfer among electronic nose instruments for monitoring volatile organic chemicals in indoor air quality. Sens. Actuators B: Chem. 160, 899–909 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Tian, F., Zhang, D. (2018). Affine Calibration Transfer Model. In: Electronic Nose: Algorithmic Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-13-2167-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2167-2_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2166-5

  • Online ISBN: 978-981-13-2167-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics